Cholinergic Receptors and Addiction

  • Chapter
  • First Online:
Behavioral Pharmacology of the Cholinergic System

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 45))

  • 1527 Accesses

Abstract

Human behavior can be controlled by physical or psychological dependencies associated with addiction. One of the most insidious addictions in our society is the use of tobacco products which contain nicotine. This addiction can be associated with specific receptors in the brain that respond to the natural neurotransmitter acetylcholine. These nicotinic acetylcholine receptors (nAChR) are ligand-gated ion channels formed by the assembly of one or multiple types of nAChR receptor subunits. In this paper, we review the structure and diversity of nAChR subunits and our understanding for how different nAChR subtypes play specific roles in the phenomenon of nicotine addiction. We focus on receptors containing β2 and/or α6 subunits and the special significance of α5-containing receptors. These subtypes all have roles in regulating dopamine-mediated neurotransmission in the mesolimbic reward pathways of the brain. We also discuss the unique roles of homomeric α7 nAChR in behavioral responses to nicotine and how our knowledge of nAChR functional diversity may help guide pharmacotherapeutic approaches for treating nicotine addiction. While nicotine addiction is a truly global problem, the use of areca nut (betel) products is also a serious addiction associated with public health issues across most of South Asia, impacting as many as 600 million people. We discuss how cholinergic receptors of the brain are also involved with areca addiction and the unique challenges for dealing with addiction to this substance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adler LE, Hoffer LJ, Griffith J, Waldo MC, Freedman R (1992) Normalization by nicotine of deficient auditory sensory gating in the relatives of schizophrenics. Biol Psychiatry 32(7):607–616

    CAS  PubMed  Google Scholar 

  • Amos CI, Wu X, Broderick P, Gorlov IP, Gu J, Eisen T, Dong Q, Zhang Q, Gu X, Vijayakrishnan J, Sullivan K, Matakidou A, Wang Y, Mills G, Doheny K, Tsai YY, Chen WV, Shete S, Spitz MR, Houlston RS (2008) Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet 40(5):616–622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atzori G, Lemmonds CA, Kotler ML, Durcan MJ, Boyle J (2008) Efficacy of a nicotine (4 mg)-containing lozenge on the cognitive impairment of nicotine withdrawal. J Clin Psychopharmacol 28(6):667–674

    CAS  PubMed  Google Scholar 

  • Auluck A, Hislop G, Poh C, Zhang L, Rosin MP (2009) Areca nut and betel quid chewing among South Asian immigrants to Western countries and its implications for oral cancer screening. Rural Remote Health 9(2):1118

    PubMed  PubMed Central  Google Scholar 

  • Bachman SA (2013) Betel nut product characteristics and availability in King County, Washington: a secret shopper study. In: Global health. University of Washington, Seattle

    Google Scholar 

  • Bailey CD, De Biasi M, Fletcher PJ, Lambe EK (2011) The nicotinic acetylcholine receptor alpha5 subunit plays a key role in attention circuitry and accuracy. J Neurosci 30(27):9241–9252

    Google Scholar 

  • Banks ML, Smith DA, Blough BE (2016) Methamphetamine-like discriminative stimulus effects of bupropion and its two hydroxy metabolites in male rhesus monkeys. Behav Pharmacol 27(2–3 Spec Issue):196–203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benowitz NL (2009) Pharmacology of nicotine: addiction, smoking-induced disease, and therapeutics. Annu Rev Pharmacol Toxicol 49:57–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benwell ME, Balfour DJ, Anderson JM (1988) Evidence that tobacco smoking increases the density of (-)-[3H]nicotine binding sites in human brain. J Neurochem 50(4):1243–1247

    CAS  PubMed  Google Scholar 

  • Bergen AW, Javitz HS, Krasnow R, Nishita D, Michel M, Conti DV, Liu J, Lee W, Edlund CK, Hall S, Kwok PY, Benowitz NL, Baker TB, Tyndale RF, Lerman C, Swan GE (2013) Nicotinic acetylcholine receptor variation and response to smoking cessation therapies. Pharmacogenet Genomics 23(2):94–103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berrettini W, Yuan X, Tozzi F, Song K, Francks C, Chilcoat H, Waterworth D, Muglia P, Mooser V (2008) Alpha-5/alpha-3 nicotinic receptor subunit alleles increase risk for heavy smoking. Mol Psychiatry 13(4):368–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bierut LJ, Stitzel JA, Wang JC, Hinrichs AL, Grucza RA, Xuei X, Saccone NL, Saccone SF, Bertelsen S, Fox L, Horton WJ, Breslau N, Budde J, Cloninger CR, Dick DM, Foroud T, Hatsukami D, Hesselbrock V, Johnson EO, Kramer J, Kuperman S, Madden PA, Mayo K, Nurnberger J Jr, Pomerleau O, Porjesz B, Reyes O, Schuckit M, Swan G, Tischfield JA, Edenberg HJ, Rice JP, Goate AM (2008) Variants in nicotinic receptors and risk for nicotine dependence. Am J Psychiatry 165(9):1163–1171

    PubMed  PubMed Central  Google Scholar 

  • Boulter J, Connolly J, Deneris E, Goldman D, Heinemann S, Patrick J (1987) Functional expression of two neural nicotinic acetylcholine receptors from cDNA clones identifies a gene family. Proc Natl Acad Sci U S A 84:7763–7767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boulter J, O’Shea-Greenfield A, Duvoisin RM, Connolly JG, Wada E, Jensen A, Gardner PD, Ballivet M, Deneris ES, McKinnon D et al (1990) Alpha 3, alpha 5, and beta 4: three members of the rat neuronal nicotinic acetylcholine receptor-related gene family form a gene cluster. J Biol Chem 265(8):4472–4482

    CAS  PubMed  Google Scholar 

  • Brunzell DH, McIntosh JM (2012) Alpha7 nicotinic acetylcholine receptors modulate motivation to self-administer nicotine: implications for smoking and schizophrenia. Neuropsychopharmacology 37(5):1134–1143

    CAS  PubMed  Google Scholar 

  • Brunzell DH, Boschen KE, Hendrick ES, Beardsley PM, McIntosh JM (2010) Alpha-conotoxin MII-sensitive nicotinic acetylcholine receptors in the nucleus accumbens shell regulate progressive ratio responding maintained by nicotine. Neuropsychopharmacology 35(3):665–673

    CAS  PubMed  Google Scholar 

  • Brunzell DH, McIntosh JM, Papke RL (2014) Diverse strategies targeting alpha7 homomeric and alpha6beta2∗ heteromeric nicotinic acetylcholine receptors for smoking cessation. Ann N Y Acad Sci 1327:27–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Changrani J, Gany FM, Cruz G, Kerr R, Katz R (2006) Paan and gutka use in the United States: a pilot study in Bangladeshi and Indian-Gujarati immigrants in New York City. J Immigr Refug Stud 4(1):99–110

    PubMed  PubMed Central  Google Scholar 

  • Charpantier E, Barneoud P, Moser P, Besnard F, Sgard F (1998) Nicotinic acetylcholine subunit mRNA expression in dopaminergic neurons of the rat substantia nigra and ventral tegmental area. Neuroreport 9(13):3097–3101

    CAS  PubMed  Google Scholar 

  • Chini B, Clementi F, Hukovic N, Sher E (1992) Neuronal-type alpha-bungarotoxin receptors and the alpha 5-nicotinic receptor subunit gene are expressed in neuronal and nonneuronal human cell lines. Proc Natl Acad Sci U S A 89(5):1572–1576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke PBS, Pert CB, Pert A (1984) Autoradiographic distribution of nicotinic receptors in rat brain. Brain Res 323:390–395

    CAS  PubMed  Google Scholar 

  • Clarke PBS, Schwartz RD, Paul SM, Pert CB, Pert A (1985) Nicotinic binding in rat brain: autoradiographic comparison of [3H] acetylcholine [3H] nicotine and [125I]-alpha-bungarotoxin. J Neurosci 5:1307–1315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coe JW, Brooks PR, Vetelino MG, Wirtz MC, Arnold EP, Huang J, Sands SB, Davis TI, Lebel LA, Fox CB, Shrikhande A, Heym JH, Schaeffer E, Rollema H, Lu Y, Mansbach RS, Chambers LK, Rovetti CC, Schulz DW, Tingley FD 3rd, O’Neill BT (2005) Varenicline: an alpha4beta2 nicotinic receptor partial agonist for smoking cessation. J Med Chem 48(10):3474–3477

    CAS  PubMed  Google Scholar 

  • Cordero-Erausquin M, Marubio LM, Klink R, Changeux JP (2000) Nicotinic receptor function: new perspectives from knockout mice. Trends Pharmacol Sci 21(6):211–217

    CAS  PubMed  Google Scholar 

  • Corrigall WA, Franklin KB, Coen KM, Clarke PB (1992) The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology (Berl) 107(2-3):285–289

    CAS  Google Scholar 

  • Corrigall WA, Coen KM, Adamson KL (1994) Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Res 653(1–2):278–284

    CAS  PubMed  Google Scholar 

  • Corringer PJ, Le Novere N, Changeux JP (2000) Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol 40:431–458

    CAS  PubMed  Google Scholar 

  • Corriveau RA, Berg DK (1993) Coexpression of multiple acetylcholine receptor genes in neurons: quantification of transcripts during development. J Neurosci 13(6):2662–2671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cryan JF, Gasparini F, van Heeke G, Markou A (2003) Non-nicotinic neuropharmacological strategies for nicotine dependence: beyond bupropion. Drug Discov Today 8(22):1025–1034

    CAS  PubMed  Google Scholar 

  • Cui C, Booker TK, Allen RS, Grady SR, Whiteaker P, Marks MJ, Salminen O, Tritto T, Butt CM, Allen WR, Stitzel JA, McIntosh JM, Boulter J, Collins AC, Heinemann SF (2003) The beta3 nicotinic receptor subunit: a component of alpha-conotoxin MII-binding nicotinic acetylcholine receptors that modulate dopamine release and related behaviors. J Neurosci 23(35):11045–11053

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Biasi M (2002) Nicotinic mechanisms in the autonomic control of organ systems. J Neurobiol 53(4):568–579

    PubMed  Google Scholar 

  • De Biasi M, Dani JA (2011) Reward, addiction, withdrawal to nicotine. Annu Rev Neurosci 34:105–130

    PubMed  PubMed Central  Google Scholar 

  • De Luca V, Wong AH, Muller DJ, Wong GW, Tyndale RF, Kennedy JL (2004) Evidence of association between smoking and alpha7 nicotinic receptor subunit gene in schizophrenia patients. Neuropsychopharmacology 29(8):1522–1526

    PubMed  Google Scholar 

  • Dent JA (2010) The evolution of pentameric ligand-gated ion channels. Adv Exp Med Biol 683:11–23

    CAS  PubMed  Google Scholar 

  • Drenan RM, Grady SR, Steele AD, McKinney S, Patzlaff NE, McIntosh JM, Marks MJ, Miwa JM, Lester HA (2010) Cholinergic modulation of locomotion and striatal dopamine release is mediated by alpha6alpha4∗ nicotinic acetylcholine receptors. J Neurosci 30(29):9877–9889

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duvoisin RM, Deneris E, Patrick J, Heinemann S (1989) The functional diversity of the neuronal acetylcholine receptors is increased by a novel subunit: b4. Neuron 3:487–496

    CAS  PubMed  Google Scholar 

  • Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S (1994) a9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79:705–715

    CAS  PubMed  Google Scholar 

  • Elgoyhen AB, Vetter DE, Katz E, Rothlin CV, Heinemann SF, Boulter J (2001) alpha10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc Natl Acad Sci U S A 98(6):3501–3506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eng CM, Kozak CA, Beaudet AL, Zoghbi HY (1991) Map** of multiple subunits of the neuronal nicotinic acetylcholine receptor to chromosome 15 in man and chromosome 9 in mouse. Genomics 9(2):278–282

    CAS  PubMed  Google Scholar 

  • Epstein D (1932) The responses of the batrachian alimentary canal to autonomic drugs. Rana and Bufo arecoline. J Physiol 75(1):99–111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Etter JF, Lukas RJ, Benowitz NL, West R, Dresler CM (2008) Cytisine for smoking cessation: a research agenda. Drug Alcohol Depend 92(1-3):3–8

    CAS  PubMed  Google Scholar 

  • Exley R, Clements MA, Hartung H, McIntosh JM, Cragg SJ (2008) Alpha6-containing nicotinic acetylcholine receptors dominate the nicotine control of dopamine neurotransmission in nucleus accumbens. Neuropsychopharmacology 33(9):2158–2166

    CAS  PubMed  Google Scholar 

  • Exley R, Maubourguet N, David V, Eddine R, Evrard A, Pons S, Marti F, Threlfell S, Cazala P, McIntosh JM, Changeux JP, Maskos U, Cragg SJ, Faure P (2011) Distinct contributions of nicotinic acetylcholine receptor subunit alpha4 and subunit alpha6 to the reinforcing effects of nicotine. Proc Natl Acad Sci U S A 108(18):7577–7582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farsalinos K, Niaura R (2019) E-cigarettes and smoking cessation in the United States according to frequency of e-cigarette use and quitting duration: analysis of the 2016 and 2017 National Health Interview Surveys. Nicotine Tob Res 22(5):655–662

    Google Scholar 

  • Fasoli F, Moretti M, Zoli M, Pistillo F, Crespi A, Clementi F, Mc Clure-Begley T, Marks MJ, Gotti C (2016) In vivo chronic nicotine exposure differentially and reversibly affects upregulation and stoichiometry of alpha4beta2 nicotinic receptors in cortex and thalamus. Neuropharmacology 108:324–331

    CAS  PubMed  Google Scholar 

  • Fowler CD, Lu Q, Johnson PM, Marks MJ, Kenny PJ (2011) Habenular alpha5 nicotinic receptor subunit signalling controls nicotine intake. Nature 471(7340):597–601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freedman R (2007) Exacerbation of schizophrenia by varenicline. Am J Psychiatry 164(8):1269

    PubMed  Google Scholar 

  • Freedman R, Adams CE, Leonard S (2000) The alpha7-nicotinic acetylcholine receptor and the pathology of hippocampal interneurons in schizophrenia. J Chem Neuroanat 20(3-4):299–306

    CAS  PubMed  Google Scholar 

  • Gangitano D, Salas R, Teng Y, Perez E, De Biasi M (2009) Progesterone modulation of alpha5 nAChR subunits influences anxiety-related behavior during estrus cycle. Genes Brain Behav 8(4):398–406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garg A, Chaturvedi P, Gupta PC (2014) A review of the systemic adverse effects of areca nut or betel nut. Indian J Med Paediatr Oncol 35(1):3–9

    PubMed  PubMed Central  Google Scholar 

  • Gee KW, Olincy A, Kanner R, Johnson L, Hogenkamp D, Harris J, Tran M, Edmonds SA, Sauer W, Yoshimura R, Johnstone T, Freedman R (2017) First in human trial of a type I positive allosteric modulator of alpha7-nicotinic acetylcholine receptors: pharmacokinetics, safety, and evidence for neurocognitive effect of AVL-3288. J Psychopharmacol 31(4):434–441

    CAS  PubMed  Google Scholar 

  • Gerzanich V, Wang F, Kuryatov A, Lindstrom J (1998) Alpha5 Subunit alters desensitization, pharmacology, Ca++ permeability and Ca++ modulation of human neuronal alpha 3 nicotinic receptors. J Pharmacol Exp Ther 286(1):311–320

    CAS  PubMed  Google Scholar 

  • Gotti C, Zoli M, Clementi F (2006) Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci 27(9):482–491

    CAS  PubMed  Google Scholar 

  • Gotti C, Guiducci S, Tedesco V, Corbioli S, Zanetti L, Moretti M, Zanardi A, Rimondini R, Mugnaini M, Clementi F, Chiamulera C, Zoli M (2010) Nicotinic acetylcholine receptors in the mesolimbic pathway: primary role of ventral tegmental area alpha6beta2∗ receptors in mediating systemic nicotine effects on dopamine release, locomotion, and reinforcement. J Neurosci 30(15):5311–5325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grady SR, Salminen O, Laverty DC, Whiteaker P, McIntosh JM, Collins AC, Marks MJ (2007) The subtypes of nicotinic acetylcholine receptors on dopaminergic terminals of mouse striatum. Biochem Pharmacol 74(8):1235–1246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grady SR, Salminen O, McIntosh JM, Marks MJ, Collins AC (2010) Mouse striatal dopamine nerve terminals express alpha4alpha5beta2 and two stoichiometric forms of alpha4beta2∗-nicotinic acetylcholine receptors. J Mol Neurosci 40(1–2):91–95

    CAS  PubMed  Google Scholar 

  • Grady SR, Wageman CR, Patzlaff NE, Marks MJ (2012) Low concentrations of nicotine differentially desensitize nicotinic acetylcholine receptors that include alpha5 or alpha6 subunits and that mediate synaptosomal neurotransmitter release. Neuropharmacology 62(5–6):1935–1943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graff H (1969) Marihuana and scopolamine “High”. Am J Psychiatry 125(9):1258–1259

    CAS  PubMed  Google Scholar 

  • Grucza RA, Wang JC, Stitzel JA, Hinrichs AL, Saccone SF, Saccone NL, Bucholz KK, Cloninger CR, Neuman RJ, Budde JP, Fox L, Bertelsen S, Kramer J, Hesselbrock V, Tischfield J, Nurnberger JI Jr, Almasy L, Porjesz B, Kuperman S, Schuckit MA, Edenberg HJ, Rice JP, Goate AM, Bierut LJ (2008) A risk allele for nicotine dependence in CHRNA5 is a protective allele for cocaine dependence. Biol Psychiatry 64(11):922–929

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guan ZZ, Zhang X, Blennow K, Nordberg A (1999) Decreased protein level of nicotinic receptor alpha7 subunit in the frontal cortex from schizophrenic brain. Neuroreport 10(8):1779–1782

    CAS  PubMed  Google Scholar 

  • Gulsevin A, Papke RL, Stokes C, Garai S, Thakur GA, Quadri M, Horenstein N (2019) Allosteric agonism of alpha7 nicotinic acetylcholine receptors. Mol Pharmacol 95(6):604–614

    Google Scholar 

  • Gupta PC, Warnakulasuriya S (2002) Global epidemiology of areca nut usage. Addict Biol 7(1):77–83

    CAS  PubMed  Google Scholar 

  • Hall FS, Sora I, Drgonova J, Li XF, Goeb M, Uhl GR (2004) Molecular mechanisms underlying the rewarding effects of cocaine. Ann N Y Acad Sci 1025:47–56

    CAS  PubMed  Google Scholar 

  • Han ZY, Le Novere N, Zoli M, Hill JA Jr, Champtiaux N, Changeux JP (2000) Localization of nAChR subunit mRNAs in the brain of Macaca mulatta. Eur J Neurosci 12(10):3664–3674

    CAS  PubMed  Google Scholar 

  • Harenza JL, Muldoon PP, De Biasi M, Damaj MI, Miles MF (2014) Genetic variation within the Chrna7 gene modulates nicotine reward-like phenotypes in mice. Genes Brain Behav 13(2):213–225

    CAS  PubMed  Google Scholar 

  • Hasin DS, O’Brien CP, Auriacombe M, Borges G, Bucholz K, Budney A, Compton WM, Crowley T, Ling W, Petry NM, Schuckit M, Grant BF (2013) DSM-5 criteria for substance use disorders: recommendations and rationale. Am J Psychiatry 170(8):834–851

    PubMed  PubMed Central  Google Scholar 

  • Heinemann S, Boulter J, Deneris E, Conolly J, Duvoisin R, Papke R, Patrick J (1990) The brain nicotinic acetylcholine receptor gene family. Prog Brain Res 86:195–203

    CAS  PubMed  Google Scholar 

  • Helekar SA, Char D, Neff S, Patrick J (1994) Prolyl isomerase requirement for the expression of functional homo-oligomeric ligand-gated ion channels. Neuron 12(1):179–189

    CAS  PubMed  Google Scholar 

  • Herzog TA, Murphy KL, Little MA, Suguitan GS, Pokhrel P, Kawamoto CT (2014) The Betel Quid Dependence Scale: replication and extension in a Guamanian sample. Drug Alcohol Depend 138:154–160

    PubMed  PubMed Central  Google Scholar 

  • Hogg RC, Bertrand D (2007) Partial agonists as therapeutic agents at neuronal nicotinic acetylcholine receptors. Biochem Pharmacol 73(4):459–468

    CAS  PubMed  Google Scholar 

  • Hughes JR, Hatsukami DK, Mitchell JE, Dahlgren LA (1986) Prevalence of smoking among psychiatric outpatients. Am J Psychiatry 143(8):993–997

    CAS  PubMed  Google Scholar 

  • IARC (2004) Betel-quid and areca-nut chewing and some areca-nut derived nitrosamines. IARC Monogr Eval Carcinog Risks Hum 85:1–334. PMID: 15635762

    Google Scholar 

  • Jackson KJ, McIntosh JM, Brunzell DH, Sanjakdar SS, Damaj MI (2009) The role of alpha6-containing nicotinic acetylcholine receptors in nicotine reward and withdrawal. J Pharmacol Exp Ther 331(2):547–554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson A, Bagdas D, Muldoon PP, Lichtman AH, Carroll FI, Greenwald M, Miles MF, Damaj MI (2017) In vivo interactions between alpha7 nicotinic acetylcholine receptor and nuclear peroxisome proliferator-activated receptor-alpha: Implication for nicotine dependence. Neuropharmacology 118:38–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jain V, Garg A, Parascandola M, Chaturvedi P, Khariwala SS, Stepanov I (2017) Analysis of alkaloids in areca nut-containing products by liquid chromatography-Tandem mass spectrometry. J Agric Food Chem 65(9):1977–1983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiteh M, Taly A, Henin J (2016) Evolution of pentameric ligand-gated ion channels: pro-loop receptors. PLoS One 11(3):e0151934

    PubMed  PubMed Central  Google Scholar 

  • Jones SR, Joseph JD, Barak LS, Caron MG, Wightman RM (1999) Dopamine neuronal transport kinetics and effects of amphetamine. J Neurochem 73(6):2406–2414

    CAS  PubMed  Google Scholar 

  • Jones JD, Comer SD, Metz VE, Manubay JM, Mogali S, Ciccocioppo R, Martinez S, Mumtaz M, Bisaga A (2017) Pioglitazone, a PPARgamma agonist, reduces nicotine craving in humans, with marginal effects on abuse potential. Pharmacol Biochem Behav 163:90–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kem WR, Olincy A, Johnson L, Harris J, Wagner BD, Buchanan RW, Christians U, Freedman R (2017) Pharmacokinetic limitations on effects of an alpha7 nicotinic receptor agonist in schizophrenia: randomized trial with an extended release formulation. Neuropsychopharmacology 43(3):583–589

    PubMed  PubMed Central  Google Scholar 

  • Khan MS, Bawany FI, Shah SR, Hussain M, Arshad MH, Nisar N (2013) Comparison of knowledge, attitude and practices of betelnut users in two socio-economic areas of Karachi. J Pak Med Assoc 63(10):1319–1325

    PubMed  Google Scholar 

  • Koukouli F, Rooy M, Tziotis D, Sailor KA, O’Neill HC, Levenga J, Witte M, Nilges M, Changeux JP, Hoeffer CA, Stitzel JA, Gutkin BS, DiGregorio DA, Maskos U (2017) Nicotine reverses hypofrontality in animal models of addiction and schizophrenia. Nat Med 23(3):347–354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari V, Postma P (2005) Nicotine use in schizophrenia: the self medication hypotheses. Neurosci Biobehav Rev 29(6):1021–1034

    CAS  PubMed  Google Scholar 

  • Kuryatov A, Lindstrom J (2011) Expression of functional human alpha6beta2beta3∗ acetylcholine receptors in Xenopus laevis oocytes achieved through subunit chimeras and concatamers. Mol Pharmacol 79(1):126–140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuryatov A, Luo J, Cooper J, Lindstrom J (2005) Nicotine acts as a pharmacological chaperone to up-regulate human alpha4beta2 acetylcholine receptors. Mol Pharmacol 68(6):1839–1851

    CAS  PubMed  Google Scholar 

  • Kuryatov A, Berrettini W, Lindstrom J (2011) Acetylcholine receptor (AChR) alpha5 subunit variant associated with risk for nicotine dependence and lung cancer reduces (alpha4beta2)alpha5 AChR function. Mol Pharmacol 79(1):119–125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CH, Ko AM, Yang FM, Hung CC, Warnakulasuriya S, Ibrahim SO, Zain RB, Ko YC (2018) Association of DSM-5 Betel-quid use disorder with oral potentially malignant disorder in 6 Betel-quid endemic Asian populations. JAMA Psychiat 75(3):261–269

    Google Scholar 

  • Leonard S, Mexal S, Freedman R (2007) Smoking, genetics and schizophrenia: evidence for self medication. J Dual Diagn 3(3-4):43–59

    PubMed  PubMed Central  Google Scholar 

  • Li MD, Yoon D, Lee JY, Han BG, Niu T, Payne TJ, Ma JZ, Park T (2010) Associations of variants in CHRNA5/A3/B4 gene cluster with smoking behaviors in a Korean population. PLoS One 5(8):e12183

    PubMed  PubMed Central  Google Scholar 

  • Lin CC, Tami-Maury I, Ma WF, Lam C, Tsai MH, Lin MT, Li CI, Liu CS, Li TC, Chiu CF, Lu IY, Gritz ER (2017) Social and cultural context of Betel quid consumption in Taiwan and implications for prevention and cessation interventions. Subst Use Misuse 52(5):646–655

    PubMed  Google Scholar 

  • Little MA, Papke RL (2015) Betel, the orphan addiction. J Addiction Res Ther 6:130–132

    Google Scholar 

  • Little MA, Pokhrel P, Murphy KL, Kawamoto CT, Suguitan GS, Herzog TA (2014) Intention to quit betel quid: a comparison of betel quid chewers and cigarette smokers. Oral Health Dental Manag 13(2):512–518

    Google Scholar 

  • Liu ME, Tsai SJ, Jeang SY, Peng SL, Wu SL, Chen MC, Tsai YL, Yang ST (2011) Varenicline prevents affective and cognitive exacerbation during smoking abstinence in male patients with schizophrenia. Psychiatry Res 190(1):79–84

    CAS  PubMed  Google Scholar 

  • Liu L, Zhao-Shea R, McIntosh JM, Gardner PD, Tapper AR (2012) Nicotine persistently activates ventral tegmental area dopaminergic neurons via nicotinic acetylcholine receptors containing alpha4 and alpha6 subunits. Mol Pharmacol 81(4):541–548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lucero LM, Weltzin MM, Eaton JB, Cooper JF, Lindstrom JM, Lukas RJ, Whiteaker P (2016) Differential alpha4(+)/(-)beta2 agonist-binding site contributions to alpha4beta2 nicotinic acetylcholine receptor function within and between isoforms. J Biol Chem 291(5):2444–2459

    CAS  PubMed  Google Scholar 

  • Luetje CW, Patrick J (1991) Both a- and b-subunits contribute to the agonist sensitivity of neuronal nicotinic acetylcholine receptors. J Neurosci 11(3):837–845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mallet J, Le Strat Y, Schurhoff F, Mazer N, Portalier C, Andrianarisoa M, Aouizerate B, Berna F, Brunel L, Capdevielle D, Chereau I, D’Amato T, Denizot H, Dubreucq J, Faget C, Gabayet F, Lancon C, Llorca PM, Misdrahi D, Rey R, Roux P, Schandrin A, Urbach M, Vidailhet P, Fond G, Dubertret C, FACE-SZ (FondaMental Academic Centers of Expertise for Schizophrenia) Group (2017) Cigarette smoking and schizophrenia: a specific clinical and therapeutic profile? Results from the FACE-Schizophrenia cohort. Prog Neuropsychopharmacol Biol Psychiatry 79(Pt B):332–339

    CAS  PubMed  Google Scholar 

  • Mansvelder HD, Keath JR, McGehee DS (2002) Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron 33(6):905–919

    CAS  PubMed  Google Scholar 

  • Markou A, Paterson NE (2001) The nicotinic antagonist methyllycaconitine has differential effects on nicotine self-administration and nicotine withdrawal in the rat. Nicotine Tob Res 3(4):361–373

    CAS  PubMed  Google Scholar 

  • Marubio LM, Changeux J (2000) Nicotinic acetylcholine receptor knockout mice as animal models for studying receptor function. Eur J Pharmacol 393(1–3):113–121

    CAS  PubMed  Google Scholar 

  • Maskos U, Molles BE, Pons S, Besson M, Guiard BP, Guilloux JP, Evrard A, Cazala P, Cormier A, Mameli-Engvall M, Dufour N, Cloez-Tayarani I, Bemelmans AP, Mallet J, Gardier AM, David V, Faure P, Granon S, Changeux JP (2005) Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature 436(7047):103–107

    CAS  PubMed  Google Scholar 

  • Mehrtash H, Duncan K, Parascandola M, David A, Gritz ER, Gupta PC, Mehrotra R, Amer Nordin AS, Pearlman PC, Warnakulasuriya S, Wen CP, Zain RB, Trimble EL (2017) Defining a global research and policy agenda for betel quid and areca nut. Lancet Oncol 18(12):e767–e775

    PubMed  Google Scholar 

  • Melis M, Scheggi S, Carta G, Madeddu C, Lecca S, Luchicchi A, Cadeddu F, Frau R, Fattore L, Fadda P, Ennas MG, Castelli MP, Fratta W, Schilstrom B, Banni S, De Montis MG, Pistis M (2013) PPARalpha regulates cholinergic-driven activity of midbrain dopamine neurons via a novel mechanism involving alpha7 nicotinic acetylcholine receptors. J Neurosci 33(14):6203–6211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mihalak KB, Carroll FI, Luetje CW (2006) Varenicline is a partial agonist at alpha4beta2 and a full agonist at alpha7 neuronal nicotinic receptors. Mol Pharmacol 70(3):801–805

    CAS  PubMed  Google Scholar 

  • Millar NS, Gotti C (2009) Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacology 56(1):237–246

    CAS  PubMed  Google Scholar 

  • Miller DK, Sumithran SP, Dwoskin LP (2002) Bupropion inhibits nicotine-evoked [(3)H]overflow from rat striatal slices preloaded with [(3)H]dopamine and from rat hippocampal slices preloaded with [(3)H]norepinephrine. J Pharmacol Exp Ther 302(3):1113–1122

    CAS  PubMed  Google Scholar 

  • Mogg AJ, Whiteaker P, McIntosh JM, Marks M, Collins AC, Wonnacott S (2002) Methyllycaconitine is a potent antagonist of alpha-conotoxin-MII-sensitive presynaptic nicotinic acetylcholine receptors in rat striatum. J Pharmacol Exp Ther 302(1):197–204

    CAS  PubMed  Google Scholar 

  • Mokdad AH, Marks JS, Stroup DF, Gerberding JL (2004) Actual causes of death in the United States, 2000. JAMA 291(10):1238–1245

    PubMed  Google Scholar 

  • Morel C, Fattore L, Pons S, Hay YA, Marti F, Lambolez B, De Biasi M, Lathrop M, Fratta W, Maskos U, Faure P (2014) Nicotine consumption is regulated by a human polymorphism in dopamine neurons. Mol Psychiatry 19(8):930–936

    CAS  PubMed  Google Scholar 

  • Moroni M, Zwart R, Sher E, Cassels BK, Bermudez I (2006) alpha4beta2 nicotinic receptors with high and low acetylcholine sensitivity: pharmacology, stoichiometry, and sensitivity to long-term exposure to nicotine. Mol Pharmacol 70(2):755–768

    CAS  PubMed  Google Scholar 

  • Murphy KL, Herzog TA (2015) Sociocultural factors that affect chewing behaviors among betel nut chewers and ex-chewers on Guam. Hawai’i J Med Publ Health 74(12):406–411

    Google Scholar 

  • Murray TA, Bertrand D, Papke RL, George AA, Pantoja R, Srinivasan R, Liu Q, Wu J, Whiteaker P, Lester HA, Lukas RJ (2012) alpha7beta2 nicotinic acetylcholine receptors assemble, function, and are activated primarily via their alpha7-alpha7 interfaces. Mol Pharmacol 81(2):175–188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nadalin S, Buretic-Tomljanovic A, Rebic J, Plesa I, Sendula Jengic V (2016) An association between the PPARalpha-L162V polymorphism and nicotine dependency among patients with schizophrenia. Compr Psychiatry 70:118–124

    PubMed  Google Scholar 

  • Nelson BS, Heischober B (1999) Betel nut: a common drug used by naturalized citizens from India, Far East Asia, and the South Pacific Islands. Ann Emerg Med 34(2):238–243

    CAS  PubMed  Google Scholar 

  • Nelson ME, Kuryatov A, Choi CH, Zhou Y, Lindstrom J (2003) Alternate stoichiometries of alpha4beta2 nicotinic acetylcholine receptors. Mol Pharmacol 63(2):332–341

    CAS  PubMed  Google Scholar 

  • Notley C, Ward E, Dawkins L, Holland R (2018) The unique contribution of e-cigarettes for tobacco harm reduction in supporting smoking relapse prevention. Harm Reduct J 15(1):31

    PubMed  PubMed Central  Google Scholar 

  • O’Neill HC, Wageman CR, Sherman SE, Grady SR, Marks MJ, Stitzel JA (2018) The interaction of the Chrna5 D398N variant with developmental nicotine exposure. Genes Brain Behav 17(7):e12474

    PubMed  PubMed Central  Google Scholar 

  • Ortells MO, Lunt GG (1995) Evolutionary history of the ligand-gated ion-channel superfamily of receptors. Trends Neurosci 18(3):121–127

    CAS  PubMed  Google Scholar 

  • Oxenham MF, Locher C, Nguyen LC, Nguyen KT (2002) Identification of Areca catechu (betel nut) residues on the dentitions of bronze age inhabitants of Nui Nap, Northern Vietnam. J Archeol Sci 29:909–915

    Google Scholar 

  • Pachas GN, Cather C, Pratt SA, Hoeppner B, Nino J, Carlini SV, Achtyes ED, Lando H, Mueser KT, Rigotti NA, Goff DC, Evins AE (2012) Varenicline for smoking cessation in Schizophrenia: safety and effectiveness in a 12-week, open-label trial. J Dual Diagn 8(2):117–125

    PubMed  PubMed Central  Google Scholar 

  • Palma E, Bertrand S, Binzoni T, Bertrand D (1996) Neuronal nicotinic alpha 7 receptor expressed in Xenopus oocytes presents five putative binding sites for methyllycaconitine. J Physiol 491:151–161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papke RL (2014) Merging old and new perspectives on nicotinic acetylcholine receptors. Biochem Pharmacol 89(1):1–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papke RL, Heinemann SF (1994) The partial agonist properties of cytisine on neuronal nicotinic receptors containing the beta2 subunit. Mol Pharm 45:142–149

    CAS  Google Scholar 

  • Papke RL, Papke JKP (2002) Comparative pharmacology of rat and human alpha7 nAChR conducted with net charge analysis. Br J Pharmacol 137(1):49–61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papke RL, Stokes C (2010) Working with OpusXpress: methods for high volume oocyte experiments. Methods 51(1):121–133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papke RL, Boulter J, Patrick J, Heinemann S (1989) Single-channel currents of rat neuronal nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes. Neuron 3:589–596

    CAS  PubMed  Google Scholar 

  • Papke RL, Dwoskin LP, Crooks PA, Zheng G, Zhang Z, McIntosh JM, Stokes C (2008) Extending the analysis of nicotinic receptor antagonists with the study of alpha6 nicotinic receptor subunit chimeras. Neuropharmacology 54(8):1189–1200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papke RL, Trocme-Thibierge C, Guendisch D, Abbas Al Rubaiy SA, Bloom SA (2011) Electrophysiological perspectives on the therapeutic use of nicotinic acetylcholine receptor partial agonists. J Pharmacol Exp Ther 337(2):367–379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papke RL, Stokes C, Muldoon P, Imad Damaj M (2013) Similar activity of mecamylamine stereoisomers in vitro and in vivo. Eur J Pharmacol 720(1-3):264–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papke RL, Horenstein NA, Stokes C (2015) Nicotinic activity of arecoline, the psychoactive element of “Betel Nuts”, suggests a basis for habitual use and anti-inflammatory activity. PLoS One 10(10):e0140907

    PubMed  PubMed Central  Google Scholar 

  • Papke RL, Bhattacharyya I, Hatsukami DK, Moe I, Glatman S (2019) Betel nut (areca) and smokeless tobacco use in Myanmar. Subst Use Misuse 54(10):1–10

    Google Scholar 

  • Patidar KA, Parwani R, Wanjari SP, Patidar AP (2015) Various terminologies associated with areca nut and tobacco chewing: a review. J Oral Maxillofac Pathol 19(1):69–76

    PubMed  PubMed Central  Google Scholar 

  • Peng C, Engle SE, Yan Y, Weera MM, Berry JN, Arvin MC, Zhao G, McIntosh JM, Chester JA, Drenan RM (2017) Altered nicotine reward-associated behavior following alpha4 nAChR subunit deletion in ventral midbrain. PLoS One 12(7):e0182142

    PubMed  PubMed Central  Google Scholar 

  • Perkins KA, Karelitz JL, Boldry MC (2017) Nicotine acutely enhances reinforcement from non-drug rewards in humans. Front Psych 8:65

    Google Scholar 

  • Perry DC, Davila-Garcia MI, Stockmeier CA, Kellar KJ (1999) Increased nicotinic receptors in brains from smokers: membrane binding and autoradiography studies. J Pharmacol Exp Ther 289(3):1545–1552

    CAS  PubMed  Google Scholar 

  • Picciotto MR, Mineur YS (2014) Molecules and circuits involved in nicotine addiction: the many faces of smoking. Neuropharmacology 76(Pt B):545–553

    CAS  PubMed  Google Scholar 

  • Picciotto M, Zoli M, Rimondini R, Lena C, Marubio L, Pich E, Fuxe K, Changeux J (1998) Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 391:173–177

    CAS  PubMed  Google Scholar 

  • Pillai SG, Ge D, Zhu G, Kong X, Shianna KV, Need AC, Feng S, Hersh CP, Bakke P, Gulsvik A, Ruppert A, Lodrup Carlsen KC, Roses A, Anderson W, Rennard SI, Lomas DA, Silverman EK, Goldstein DB, Investigators I (2009) A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet 5(3):e1000421

    PubMed  PubMed Central  Google Scholar 

  • Pobutsky AM, Neri EI (2012) Betel nut chewing in Hawai’i: is it becoming a public health problem? Historical and socio-cultural considerations. Hawai’i J Med Publ Health 71(1):23–26

    Google Scholar 

  • Pons S, Fattore L, Cossu G, Tolu S, Porcu E, McIntosh JM, Changeux JP, Maskos U, Fratta W (2008) Crucial role of alpha4 and alpha6 nicotinic acetylcholine receptor subunits from ventral tegmental area in systemic nicotine self-administration. J Neurosci 28(47):12318–12327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raghavan V, Baruah HK (1958) Arecanut: India’s popular masticatory history, chemistry and utilization. Econ Bot 12(4):315–345

    Google Scholar 

  • Rahman S, Zhang Z, Papke RL, Crooks PA, Dwoskin LP, Bardo MT (2007) Region-specific effects of N,N'-dodecane-1,12-diyl-bis-3-picolinium dibromide on nicotine-induced increase in extracellular dopamine in vivo. Br J Pharmacol 153(4):792–804

    PubMed  PubMed Central  Google Scholar 

  • Rakhilin S, Drisdel RC, Sagher D, McGehee DS, Vallejo Y, Green WN (1999) alpha-bungarotoxin receptors contain alpha7 subunits in two different disulfide-bonded conformations. J Cell Biol 146(1):203–218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez-Latorre J, Yu CR, Qu X, Perin F, Karlin A, Role L (1996) Functional contributions of alpha5 subunit to neuronal acetylcholine receptor channels. Nature 380(6572):347–351

    CAS  PubMed  Google Scholar 

  • Robinson TE, Berridge KC (2003) Addiction. Annu Rev Psychol 54:25–53

    PubMed  Google Scholar 

  • Robinson JH, Pritchard WS (1992) The role of nicotine in tobacco use. Psychopharmacology (Berl) 108(4):397–407

    CAS  Google Scholar 

  • Rooney DF (1993) Betel chewing traditions in South-East Asia. Oxford University Press, Kuala Lumpur

    Google Scholar 

  • Rose JE, Levin ED, Behm FM, Adivi C, Schur C (1990) Transdermal nicotine facilitates smoking cessation. Clin Pharmacol Ther 47(3):323–330

    CAS  PubMed  Google Scholar 

  • Saccone NL, Wang JC, Breslau N, Johnson EO, Hatsukami D, Saccone SF, Grucza RA, Sun L, Duan W, Budde J, Culverhouse RC, Fox L, Hinrichs AL, Steinbach JH, Wu M, Rice JP, Goate AM, Bierut LJ (2009) The CHRNA5-CHRNA3-CHRNB4 nicotinic receptor subunit gene cluster affects risk for nicotine dependence in African-Americans and in European-Americans. Cancer Res 69(17):6848–6856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salas R, Orr-Urtreger A, Broide RS, Beaudet A, Paylor R, De Biasi M (2003) The nicotinic acetylcholine receptor subunit alpha 5 mediates short-term effects of nicotine in vivo. Mol Pharmacol 63(5):1059–1066

    CAS  PubMed  Google Scholar 

  • Salas R, Sturm R, Boulter J, De Biasi M (2009) Nicotinic receptors in the habenulo-interpeduncular system are necessary for nicotine withdrawal in mice. J Neurosci 29(10):3014–3018

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanjakdar SS, Maldoon PP, Marks MJ, Brunzell DH, Maskos U, McIntosh JM, Bowers MS, Damaj MI (2015) Differential roles of alpha6beta2∗ and alpha4beta2∗ neuronal nicotinic receptors in nicotine- and cocaine-conditioned reward in mice. Neuropsychopharmacology 40(2):350–360

    CAS  PubMed  Google Scholar 

  • Schlaepfer IR, Hoft NR, Collins AC, Corley RP, Hewitt JK, Hopfer CJ, Lessem JM, McQueen MB, Rhee SH, Ehringer MA (2008) The CHRNA5/A3/B4 gene cluster variability as an important determinant of early alcohol and tobacco initiation in young adults. Biol Psychiatry 63(11):1039–1046

    CAS  PubMed  Google Scholar 

  • Schuster RM, Pachas GN, Stoeckel L, Cather C, Nadal M, Mischoulon D, Schoenfeld DA, Zhang H, Ulysse C, Dodds EB, Sobolewski S, Hudziak V, Hanly A, Fava M, Evins AE (2018) Phase IIb trial of an alpha7 nicotinic receptor partial agonist with and without nicotine patch for withdrawal-associated cognitive deficits and tobacco abstinence. J Clin Psychopharmacol 38(4):307–316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sciaccaluga M, Moriconi C, Martinello K, Catalano M, Bermudez I, Stitzel JA, Maskos U, Fucile S (2015) Crucial role of nicotinic alpha5 subunit variants for Ca2+ fluxes in ventral midbrain neurons. FASEB J 29(8):3389–3398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seguela P, Wadiche J, Dinely-Miller K, Dani JA, Patrick JW (1993) Molecular cloning, functional properties and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci 13(2):596–604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sivilotti LG, McNeil DK, Lewis TM, Nassar MA, Schoepfer R, Colquhoun D (1997) Recombinant nicotinic receptors, expressed in Xenopus oocytes, do not resemble native rat sympathetic ganglion receptors in single-channel behaviour. J Physiol 500(Pt 1):123–138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skok VI (2002) Nicotinic acetylcholine receptors in autonomic ganglia. Auton Neurosci 97(1):1–11

    CAS  PubMed  Google Scholar 

  • Slemmer JE, Martin BR, Damaj MI (2000) Bupropion is a nicotinic antagonist. J Pharmacol Exp Ther 295(1):321–327

    CAS  PubMed  Google Scholar 

  • Smit AB, Syed NI, Schaap D, van Minnen J, Klumperman J, Kits KS, Lodder H, van der Schors RC, van Elk R, Sorgedrager B, Brejc K, Sixma TK, Geraerts WP (2001) A glia-derived acetylcholine-binding protein that modulates synaptic transmission. Nature 411(6835):261–268

    CAS  PubMed  Google Scholar 

  • Smith TT, Hatsukami DK, Benowitz NL, Colby SM, McClernon FJ, Strasser AA, Tidey JW, White CM, Donny EC (2018) Whether to push or pull? Nicotine reduction and non-combusted alternatives – two strategies for reducing smoking and improving public health. Prev Med 117:8–14

    PubMed  PubMed Central  Google Scholar 

  • Stevens VL, Bierut LJ, Talbot JT, Wang JC, Sun J, Hinrichs AL, Thun MJ, Goate A, Calle EE (2008) Nicotinic receptor gene variants influence susceptibility to heavy smoking. Cancer Epidemiol Biomarkers Prev 17(12):3517–3525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stolerman IP, Shoaib M (1991) The neurobiology of tobacco addiction. Trends Pharmacol Sci 12:467–473

    CAS  PubMed  Google Scholar 

  • Tammimaki A, Herder P, Li P, Esch C, Laughlin JR, Akk G, Stitzel JA (2012) Impact of human D398N single nucleotide polymorphism on intracellular calcium response mediated by alpha3beta4alpha5 nicotinic acetylcholine receptors. Neuropharmacology 63(6):1002–1011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tapper AR, McKinney SL, Nashmi R, Schwarz J, Deshpande P, Labarca C, Whiteaker P, Marks MJ, Collins AC, Lester HA (2004) Nicotine activation of alpha4∗ receptors: sufficient for reward, tolerance, and sensitization. Science 306(5698):1029–1032

    CAS  PubMed  Google Scholar 

  • Threlfell S, Lalic T, Platt NJ, Jennings KA, Deisseroth K, Cragg SJ (2012) Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 75(1):58–64

    CAS  PubMed  Google Scholar 

  • Tregellas JR, Olincy A, Johnson L, Tanabe J, Shatti S, Martin LF, Singel D, Du YP, Soti F, Kem WR, Freedman R (2010) Functional magnetic resonance imaging of effects of a nicotinic agonist in Schizophrenia. Neuropsychopharmacology 35(4):938–942

    CAS  PubMed  Google Scholar 

  • Uhl GR, Hall FS, Sora I (2002) Cocaine, reward, movement and monoamine transporters. Mol Psychiatry 7(1):21–26

    CAS  PubMed  Google Scholar 

  • Uteshev VV, Meyer EM, Papke RL (2002) Activation and inhibition of native neuronal alpha-bungarotoxin-sensitive nicotinic ACh receptors. Brain Res 948(1-2):33–46

    CAS  PubMed  Google Scholar 

  • Vailati S, Moretti M, Longhi R, Rovati GE, Clementi F, Gotti C (2003) Developmental expression of heteromeric nicotinic receptor subtypes in chick retina. Mol Pharmacol 63(6):1329–1337

    CAS  PubMed  Google Scholar 

  • Wada E, Wada K, Boulter J, Deneris E, Heinemann S, Patrick J, Swanson LW (1989) Distribution of alpha2, alpha3, alpha4, and beta2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J Comp Neurol 284:314–335

    CAS  PubMed  Google Scholar 

  • Walling D, Marder SR, Kane J, Fleischhacker WW, Keefe RS, Hosford DA, Dvergsten C, Segreti AC, Beaver JS, Toler SM, Jett JE, Dunbar GC (2016) Phase 2 trial of an alpha-7 nicotinic receptor agonist (TC-5619) in negative and cognitive symptoms of Schizophrenia. Schizophr Bull 42(2):335–343

    PubMed  Google Scholar 

  • Walters CL, Brown S, Changeux JP, Martin B, Damaj MI (2006) The beta2 but not alpha7 subunit of the nicotinic acetylcholine receptor is required for nicotine-conditioned place preference in mice. Psychopharmacology (Berl) 184(3–4):339–344

    CAS  Google Scholar 

  • Wang J, Lindstrom J (2017) Orthosteric and allosteric potentiation of heteromeric neuronal nicotinic acetylcholine receptors. Br J Pharmacol 175(11):1805–1821

    PubMed  PubMed Central  Google Scholar 

  • Wang F, Gerzanich V, Wells GB, Anand R, Peng X, Keyser K, Lindstrom J (1996) Assembly of human neuronal nicotinic receptor alpha5 subunits with alpha3, beta2, and beta4 subunits. J Biol Chem 271(30):17656–17665

    CAS  PubMed  Google Scholar 

  • Wang Y, Lee JW, Oh G, Grady SR, McIntosh JM, Brunzell DH, Cannon JR, Drenan RM (2014) Enhanced synthesis and release of dopamine in transgenic mice with gain-of-function alpha6∗ nAChRs. J Neurochem 129(2):315–327

    CAS  PubMed  Google Scholar 

  • Williams DK, Stokes C, Horenstein NA, Papke RL (2011) The effective opening of nicotinic acetylcholine receptors with single agonist binding sites. J Gen Physiol 137(4):369–384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams DK, Peng C, Kimbrell MR, Papke RL (2012a) The intrinsically low open probability of alpha7 nAChR can be overcome by positive allosteric modulation and serum factors leading to the generation of excitotoxic currents at physiological temperatures. Mol Pharmacol 82(4):746–759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams JM, Anthenelli RM, Morris CD, Treadow J, Thompson JR, Yunis C, George TP (2012b) A randomized, double-blind, placebo-controlled study evaluating the safety and efficacy of varenicline for smoking cessation in patients with schizophrenia or schizoaffective disorder. J Clin Psychiatry 73(5):654–660

    CAS  PubMed  Google Scholar 

  • Zoli M, Pucci S, Vilella A, Gotti C (2018) Neuronal and extraneuronal nicotinic acetylcholine receptors. Curr Neuropharmacol 16(4):338–349

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

RLP is supported by NIH RO1 GM57481, DHB is supported by NIH RO1 DA042749, and MDB is supported by NIH RO1 DA044205 and UO1 AA025931.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger L. Papke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papke, R.L., Brunzell, D.H., De Biasi, M. (2020). Cholinergic Receptors and Addiction. In: Shoaib, M., Wallace, T. (eds) Behavioral Pharmacology of the Cholinergic System. Current Topics in Behavioral Neurosciences, vol 45. Springer, Cham. https://doi.org/10.1007/7854_2020_139

Download citation

Publish with us

Policies and ethics

Navigation