A Coculture System for Modeling Intestinal Epithelial-Fibroblast Crosstalk

  • Protocol
  • First Online:
Methods in Molecular Biology

Part of the book series: Methods in Molecular Biology

Abstract

Epithelial organoid monoculture is a powerful tool to model stem cell dynamics in vitro. However, extensive efforts have recently revealed various niche players and their significant roles in regulating epithelial stem cells. Among these niche components, fibroblasts have been heavily recognized in the field as a critical niche signal secretor. Thus, understanding the roles of fibroblasts in epithelial dynamics has become increasingly relevant and crucial. This propels the development of approaches to coculture epithelial 3D organoids with fibroblasts to model epithelial-fibroblast crosstalk in vitro. Here, we describe a stepwise coculture method to isolate and culture primary intestinal fibroblasts and epithelial organoids together. Aligned with the recent literature, our coculture protocol allows for primary intestinal fibroblast support of epithelial organoid growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Sumigray KD, Terwilliger M, Lechler T (2018) Morphogenesis and compartmentalization of the intestinal crypt. Dev Cell 45(2):183–197 e185. https://doi.org/10.1016/j.devcel.2018.03.024

    Article  Google Scholar 

  2. Barker N et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165):1003–1007. https://doi.org/10.1038/nature06196

    Article  Google Scholar 

  3. Sangiorgi E, Capecchi MR (2008) Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 40(7):915–920. https://doi.org/10.1038/ng.165

    Article  Google Scholar 

  4. Yan KS et al (2012) The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc Natl Acad Sci USA 109(2):466–471. https://doi.org/10.1073/pnas.1118857109

    Article  Google Scholar 

  5. Yan KS et al (2017) Intestinal Enteroendocrine lineage cells possess homeostatic and injury-inducible stem cell activity. Cell Stem Cell 21(1):78–90 e76. https://doi.org/10.1016/j.stem.2017.06.014

    Article  Google Scholar 

  6. Sato T et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265. https://doi.org/10.1038/nature07935

    Article  Google Scholar 

  7. Ootani A et al (2009) Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med 15(6):701–706. https://doi.org/10.1038/nm.1951

    Article  Google Scholar 

  8. Miyoshi H, Stappenbeck TS (2013) In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nat Protoc 8(12):2471–2482. https://doi.org/10.1038/nprot.2013.153

    Article  Google Scholar 

  9. Levin G et al (2020) Production, purification and characterization of recombinant human R-spondin1 (RSPO1) protein stably expressed in human HEK293 cells. BMC Biotechnol 20(1):5. https://doi.org/10.1186/s12896-020-0600-0

    Article  Google Scholar 

  10. Lei NY et al (2014) Intestinal subepithelial myofibroblasts support the growth of intestinal epithelial stem cells. PLoS One 9(1):e84651. https://doi.org/10.1371/journal.pone.0084651

    Article  Google Scholar 

  11. McCarthy N et al (2020) Distinct mesenchymal cell populations generate the essential intestinal BMP signaling gradient. Cell Stem Cell 26(3):391–402 e395. https://doi.org/10.1016/j.stem.2020.01.008

    Article  Google Scholar 

  12. Kraiczy J et al (2023) Graded BMP signaling within intestinal crypt architecture directs self-organization of the Wnt-secreting stem cell niche. Cell Stem Cell 30(4):433–449 e438. https://doi.org/10.1016/j.stem.2023.03.004

    Article  Google Scholar 

  13. McCarthy N et al (2023) Smooth muscle contributes to the development and function of a layered intestinal stem cell niche. Dev Cell 58(7):550–564 e556. https://doi.org/10.1016/j.devcel.2023.02.012

    Article  Google Scholar 

  14. Staab JF et al (2020) Co-culture system of human enteroids/colonoids with innate immune cells. Curr Protoc Immunol 131(1):e113. https://doi.org/10.1002/cpim.113

    Article  Google Scholar 

  15. Maruyama M et al (2023) Establishment of a novel in vitro co-culture system of enteric neurons and Caco-2 cells for evaluating the effect of enteric nervous system on transepithelial transport of drugs. Int J Pharm 633:122617. https://doi.org/10.1016/j.ijpharm.2023.122617

    Article  Google Scholar 

  16. Psichas A et al (2017) Mixed primary cultures of murine small intestine intended for the study of gut hormone secretion and live cell imaging of enteroendocrine cells. J Vis Exp 122. https://doi.org/10.3791/55687

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaelyn Sumigray .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lee, R.F., Li, ML., Figetakis, M., Sumigray, K. (2024). A Coculture System for Modeling Intestinal Epithelial-Fibroblast Crosstalk. In: Methods in Molecular Biology. Springer, New York, NY. https://doi.org/10.1007/7651_2024_544

Download citation

  • DOI: https://doi.org/10.1007/7651_2024_544

  • Published:

  • Publisher Name: Springer, New York, NY

Publish with us

Policies and ethics

Navigation