A3 Adenosine Receptor Ligands: From Discovery to Clinical Trials

  • Chapter
  • First Online:
Purinergic Receptors and their Modulators

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 41))

  • 131 Accesses

Abstract

Numerous classes of selective agonists, antagonists, and allosteric modulators of the A3 adenosine receptor (AR) have been reported. The structure–affinity relationships and selectivity of A3AR ligands compared to the other three ARs have been described. Furthermore, prodrugs of some of these ligands have been reported, and their efficacy was demonstrated in animal models. In recent years, a structural approach has been adopted for the discovery of novel A3AR ligands, either to improve the potency of known ligands or to discover novel chemotypes for this receptor. Some A3AR ligands are being developed as therapeutic candidate molecules for a variety of chronic (e.g., psoriasis, NASH, pain, cancer, glaucoma) and acute (stroke, cardiac ischemia) conditions. The number of current clinical trials for A3AR ligands has now grown, with A3AR agonists accounting for the majority. Both the historical development of this field and the current state of the clinical trial-directed medicinal chemistry are included in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borea PA, Varani K, Vincenzi F, Baraldi PG, Tabrizi MA, Merighi S et al (2015) The A3 adenosine receptor: history and perspectives. Pharmacol Rev 67(1):74–102

    PubMed  Google Scholar 

  2. Jacobson KA, Tosh DK, Gao ZG, Yu J, Suresh RR, Rao H, Romagnoli R, Baraldi PG, Tabrizi MA (2018) Chapter 7. Medicinal chemistry of the A3 adenosine receptor. In: Varani K (ed) The adenosine receptors, the receptors, vol 34. Springer, pp 169–198. https://doi.org/10.1007/978-3-319-90808-3_7

    Chapter  Google Scholar 

  3. Merighi S, Battistello E, Giacomelli L, Varani K, Vincenzi F, Borea PA et al (2019) Targeting A3 and A2A adenosine receptors in the fight against cancer. Expert Opin Ther Targets:1–10. https://doi.org/10.1080/14728222.2019.1630380

  4. David M, Gospodinov DK, Gheorghe N et al (2016) Treatment of plaque-type psoriasis with oral CF101: data from a phase II/III multicenter, randomized, controlled trial. J Drugs Dermatol 15(8):931–938

    CAS  PubMed  Google Scholar 

  5. Safadi R, Braun M, Francis A et al (2021) Randomised clinical trial: a phase 2 double-blind study of namodenoson in non-alcoholic fatty liver disease and steatohepatitis. Aliment Pharmacol Ther 54:1405–1415. https://doi.org/10.1111/apt.16664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jung S-M, Peyton L, Essa H, Choi D-S (2022) Adenosine receptors: emerging non-opioids targets for pain medications. Neurobiol Pain 11:100087. https://www.sciencedirect.com/science/article/pii/S2452073X22000046

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Spinozzi E, Baldassarri C, Acquaticci L et al (2021) Adenosine receptors as promising targets for the management of ocular diseases. Med Chem Res 30:353–370. https://doi.org/10.1007/s00044-021-02704-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen G-J, Harvey BK, Shen H, Chou J, Victor A, Wang Y (2006) Activation of adenosine A3 receptors reduces ischemic brain injury in rodents. J Neurosci Res 84:1848–1855. https://doi.org/10.1002/jnr.21071

    Article  CAS  PubMed  Google Scholar 

  9. Jacobson KA, Tosh DK, Jain S, Gao ZG (2019) Historical and current adenosine receptor agonists in preclinical and clinical development. Front Cell Neurosci 13:124. https://doi.org/10.3389/fncel.2019.00124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baraldi PG, Tabrizi MA, Gessi S, Borea PA (2008) Adenosine receptor antagonists: translating medicinal chemistry and pharmacology into clinical utility. Chem Rev 108(1):238–263. https://doi.org/10.1021/cr0682195

    Article  CAS  PubMed  Google Scholar 

  11. Fishman P (2022) Drugs targeting the A3 adenosine receptor: human clinical study data. Molecules 27:3680. https://doi.org/10.3390/molecules27123680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bar-Yehuda S, Rath-Wolfson L, Del Valle L, Ochaion A, Cohen S, Patoka R, Zozulya G, Barer F, Atar E, Pina-Oviedo S, Perez-Liz G, Castel D, Fishman P (2009) Induction of an anti-inflammatory effect and prevention of cartilage damage in rat knee osteoarthritis by CF101 treatment. Arthritis Rheum 60(10):3061–3071. https://doi.org/10.1002/art.24817

    Article  CAS  PubMed  Google Scholar 

  13. Fishman P, Cohen S, Bar-Yehuda S (2013) Targeting the A3 adenosine receptor for glaucoma treatment (review). Mol Med Rep 7(6):1723–1725. https://doi.org/10.3892/mmr.2013.1413

    Article  CAS  PubMed  Google Scholar 

  14. Bar-Yehuda S, Luger D, Ochaion A, Cohen S, Patokaa R, Zozulya G, Silver PB, de Morales JM, Caspi RR, Fishman P (2011) Inhibition of experimental auto-immune uveitis by the A3 adenosine receptor agonist CF101. Int J Mol Med 28(5):727–731. https://doi.org/10.3892/ijmm.2011.753

    Article  CAS  PubMed  Google Scholar 

  15. Cohen S, Fishman P (2019) Targeting the A3 adenosine receptor to treat cytokine release syndrome in cancer immunotherapy. Drug Des Devel Ther 13:491–497

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Stemmer SM, Manojlovic NS, Marinca MV, Petrov P, Cherciu N, Ganea D, Ciuleanu TE, Pusca IA, Beg MS, Purcell WT et al (2021) Namodenoson in advanced hepatocellular carcinoma and Child–Pugh B cirrhosis: randomized placebo-controlled clinical trial. Cancers 13:187. https://doi.org/10.3390/cancers13020187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Safadi R, Braun M, Francis A, Milgrom Y, Massarwa M, Hakimian D, Hazou W, Issachar A, Harpaz Z, Farbstein M, Itzhak I, Lev-Cohain N, Bareket-Samish A, Silverman MH, Fishman P (2021) Randomised clinical trial: A phase 2 double-blind study of namodenoson in non-alcoholic fatty liver disease and steatohepatitis. Aliment Pharmacol Ther 54(11–12):1405–1415. https://doi.org/10.1111/apt.16664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bozdemir E, Vigil FA, Chun SH, Espinoza L, Bugay V, Khoury SM, Holstein DM, Stoja A, Lozano D, Tunca C, Sprague SM, Cavazos JE, Brenner R, Liston TE, Shapiro MS, Lechleiter JD (2021) Neuroprotective roles of the adenosine A3 receptor agonist AST-004 in mouse model of traumatic brain injury. Neurotherapeutics 18:2707–2721. https://doi.org/10.1007/s13311-021-01113-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shon C, Choi SY, Park JS, Park CW, Lee J, Roh YS (2021) Preclinical characterization of FM101, a first-in-class A3 adenosine receptor modulator for the treatment of non-alcoholic steatohepatitis. Eur Assoc Stud Liver Abstr. https://www.postersessiononline.eu/173580348_eu/congresos/ILC2019/aula/-FRI_344_ILC2019.pdf

  20. Park CW, Han CT, Sakaguchi Y, Lee J, Youn HY (2020) Safety evaluation of FM101, an A3 adenosine receptor modulator, in rat, for develo** as therapeutics of glaucoma and hepatitis. EXCLI J 19:187–200. https://doi.org/10.17179/excli2019-2058

    Article  PubMed  PubMed Central  Google Scholar 

  21. Steigerwald I, Pergolizzia J, Argoff C (2020) Efficacy and safety of NTM-006 in a randomized, double-blind, placebo- and active-controlled trial in moderate to severe pain after third molar extraction. Meaningful and sustained analgesia over 24 h demonstrated for a single dose (1000 mg) of NTM- 006, an NCE with a novel non-opioid/non-NSAID mechanism of action. (2020) PAINWeek Abstract Book 2020. Postgrad Med 132(Suppl 1):1–76. https://doi.org/10.1080/00325481.2020.1824967. abstract 22, pp 19–21

    Article  Google Scholar 

  22. IJzerman AP, Jacobson KA, Müller CE, Cronstein BN, Cunha RA (2022) International Union of Basic and Clinical Pharmacology. CXII: adenosine receptors – a further update. Pharmacol Rev 74:340–372

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Meyerhof W, Müller-Brechlin R, Richter D (1991) Molecular cloning of a novel putative G-protein coupled receptor expressed during rat spermiogenesis. FEBS Lett 284(2):155–160. https://doi.org/10.1016/0014-5793(91)80674-r

    Article  CAS  PubMed  Google Scholar 

  24. Zhou QY, Li C, Olah ME, Johnson RA, Stiles GL, Civelli O (1992) Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. Proc Natl Acad Sci U S A 89(16):7432–7326. https://doi.org/10.1073/pnas.89.16.7432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Linden J, Taylor HE, Robeva AS, Tucker AL, Stehle H, Rivkees SA, Fink JS, Reppert SM (1993) Molecular cloning and functional expression of a sheep A3 adenosine receptor with widespread tissue distribution. Mol Pharmacol 44(3):524–532

    CAS  PubMed  Google Scholar 

  26. Salvatore CA, Jacobson MA, Taylor HE, Linden J, Johnson RG (1993) Molecular cloning and characterization of the human A3 adenosine receptor. Proc Natl Acad Sci U S A 90(21):10365–10369. https://doi.org/10.1073/pnas.90.21.10365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ali H, Cunha-Melo JR, Saul WF, Beaven MA (1990) Activation of phospholipase C via adenosine receptors provides synergistic signals for secretion in antigen-stimulated RBL-2H3 cells. Evidence for a novel adenosine receptor. J Biol Chem 265(2):745–753

    CAS  PubMed  Google Scholar 

  28. van Galen PJM, van Bergen AH, Gallo-Rodriguez C, Melman N, Olah ME, IJzerman AP, Stiles GL, Jacobson KA (1994) A binding site model and structure-activity relationships for the rat A3 adenosine receptor. Mol Pharmacol 45:1101–1111

    PubMed  Google Scholar 

  29. Jacobson KA, Nikodijevic O, Shi D, Gallo-Rodriguez C, Olah ME, Stiles GL, Daly JW (1993) A role for central A3-adenosine receptors: mediation of behavioral depressant effects. FEBS Lett 336:57–60

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Carlin JL, Jain S, Gizewski E, Wan TC, Tosh DK, **ao C, Auchampach JA, Jacobson KA, Gavrilova O, Reitman ML (2017) Hypothermia in mouse is caused by adenosine A1 and A3 receptor agonists and AMP via three distinct mechanisms. Neuropharmacology 114:101–113

    CAS  PubMed  Google Scholar 

  31. von Lubitz DKJE, Lin RC-S, Popik P, Carter MF, Jacobson KA (1994) Adenosine A3 receptor stimulation and cerebral ischemia. Eur J Pharmacol 263:59–67

    Google Scholar 

  32. Liu GS, Richards SC, Olsson RA, Mullane K, Walsh RS, Downey JM (1994) Evidence that the adenosine A3 receptor may mediate the protection afforded by preconditioning in the isolated rabbit heart. Cardiovasc Res 28:1057–1061

    CAS  PubMed  Google Scholar 

  33. Liang BT, Jacobson KA (1998) A physiological role of the adenosine A3 receptor: sustained cardioprotection. Proc Natl Acad Sci U S A 95:6995–6999

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ross Tracey W, Magee W, Masamune H, Kennedy SP, Knight DR, Allan Buchholz R, Hill RJ (1997) Selective adenosine A3 receptor stimulation reduces ischemic myocardial injury in the rabbit heart. Cardiovasc Res 33(2):410–415. https://doi.org/10.1016/S0008-6363(96)00240-4

    Article  Google Scholar 

  35. Gallo-Rodriguez C, Ji X-D, Melman N, Siegman BD, Sanders LH, Orlina J, Fischer B, Pu Q-L, Olah ME, van Galen PJM, Stiles GL, Jacobson KA (1994) Structure-activity relationships of N6-benzyladenosine-5′-uronamides as A3-selective adenosine agonists. J Med Chem 37:636–646

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim HO, Ji X-D, Siddiqi SM, Olah ME, Stiles GL, Jacobson KA (1994) 2-Substitution of N6-benzyladenosine-5′-uronamides enhances selectivity for A3-adenosine receptors. J Med Chem 37:3614–3621

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gao ZG, Auchampach JA, Jacobson KA (2023) Species dependence of A3 adenosine receptor pharmacology and function. Purinergic Signal:1. https://doi.org/10.1007/s11302-022-09910-1

  38. Ji X-D, von Lubitz D, Olah ME, Stiles GL, Jacobson KA (1994) Species differences in ligand affinity at central A3-adenosine receptors. Drug Dev Res 33:51–59

    CAS  Google Scholar 

  39. Jacobson KA, Gao ZG, Liang BT (2007) Neoceptors: reengineering GPCRs to recognize tailored ligands. Trends Pharmacol Sci 28:111–116

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Suresh RR, Gao ZG, Salmaso V, Chen E, Campbell RG, Poe RB, Liston TE, Jacobson KA (2022) Selective A3 adenosine receptor antagonist radioligand for human and rodent species. ACS Med Chem Lett 13(4):623–631

    CAS  PubMed  PubMed Central  Google Scholar 

  41. van Galen PJM, Adriaan P, IJzerman AP, Soudijn W (1990) Xanthine-7-ribosides as adenosine Al receptor antagonists: further evidence for Adenosine's anti mode of binding. Nucleosides Nucleotides 9(2):275–291. https://doi.org/10.1080/07328319008045138

    Article  Google Scholar 

  42. Kim HO, Ji X-D, Melman N, Olah ME, Stiles GL, Jacobson KA (1994) Structure activity relationships of 1,3-dialkylxanthine derivatives at rat A3-adenosine receptors. J Med Chem 37:3373–3382

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Park KS, Hoffmann C, Kim HO, Padgett WL, Daly JW, Brambilla R, Motta C, Abbracchio MP, Jacobson KA (1998) Activation and desensitization of rat A3-adenosine receptors by selective adenosine derivatives and xanthine-7-ribosides. Drug Dev Res 44:97–105

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Olah ME, Gallo-Rodriguez C, Jacobson KA, Stiles GL (1994) 125I-4-Aminobenzyl-5′-N-methylcarboxamidoadenosine, a high affinity radioligand for the rat A3 adenosine receptor. Mol Pharmacol 45:978–982

    CAS  PubMed  Google Scholar 

  45. Rivkees SA, Thevananther S, Hao H (2000) Are A3 adenosine receptors expressed in the brain? Neuroreport 11(5):1025–1030

    CAS  PubMed  Google Scholar 

  46. Klotz KN, Falgner N, Kachler S, Lambertucci C, Vittori S, Volpini R, Cristalli G (2007) [3H]HEMADO – a novel tritiated agonist selective for the human adenosine A3 receptor. Eur J Pharmacol 556(1–3):14–18. https://doi.org/10.1016/j.ejphar.2006.10.048

    Article  CAS  PubMed  Google Scholar 

  47. **e R, Li AH, Ji X-D, Melman N, Olah ME, Stiles GL, Jacobson KA (1999) Selective adenosine A3 receptor antagonists: water soluble 3,5-diacylpyridinium salts and their oxidative generation from dihydropyridine precursors. J Med Chem 42:4232–4238

    CAS  PubMed  Google Scholar 

  48. Ji X-D, Gallo-Rodriguez C, Jacobson KA (1994) A selective agonist affinity label for A3 adenosine receptors. Biochem Biophys Res Commun 203:570–576

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang X, van Veldhoven JPD, Offringa J et al (2019) Development of covalent ligands for G protein-coupled receptors: a case for the human adenosine A3 receptor. J Med Chem 62(7):3539–3552. https://doi.org/10.1021/acs.jmedchem.8b02026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stoddart LA, Vernall AJ, Briddon SJ, Kellam B, Hill SJ (2015) Direct visualisation of internalization of the adenosine A3 receptor and localization with arrestin3 using a fluorescent agonist. Neuropharmacology 98:68–77. https://doi.org/10.1016/j.neuropharm.2015.04.013

    Article  CAS  PubMed  Google Scholar 

  51. Toti KS, Campbell RG, Lee H, Salmaso V, Suresh RR, Gao ZG, Jacobson KA (2022) Fluorescent A2A and A3 adenosine receptor antagonists as flow cytometry probes. Purinergic Signal. https://doi.org/10.1007/s11302-022-09873-3

  52. DeNinno MP, Masamune H, Chenard LK, DiRico KJ, Eller C, Etienne JB, Tickner JE, Kennedy SP, Knight DR, Kong J, Oleynek JJ, Tracey WR, Hill RJ (2003) 3′-Aminoadenosine-5′-uronamides: discovery of the first highly selective agonist at the human adenosine A3 receptor. J Med Chem 46:353–355

    CAS  PubMed  Google Scholar 

  53. Elzein et al (2004) 2-Pyrazolyl-N6-substituted adenosine derivatives as high affinity and selective adenosine A3 receptor agonists. J Med Chem 47:4766–4773

    CAS  PubMed  Google Scholar 

  54. Jacobson KA, Ji X, Li A-H, Melman N, Siddiqui MA, Shin K-J, Marquez VE, Ravi RG (2000) Methanocarba analogues of purine nucleosides as potent and selective adenosine receptor agonists. J Med Chem 43:2196–2203. http://pubs.acs.org. https://doi.org/10.1021/jm9905965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tchilibon S, Joshi BV, Kim S-K, Duong HT, Gao Z-G, Jacobson KA (2005) (N)-methanocarba 2,N6-disubstituted adenine nucleosides as highly potent and selective A3 adenosine receptor agonists. J Med Chem 48(6):1745–1758. https://doi.org/10.1021/jm049580r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Melman A, Gao Z-G, Kumar D, Wan TC, Gizewski E, Auchampach JA, Jacobson KA (2008) Design of (N)-methanocarba adenosine 5′-uronamides as species-independent A3 receptor-selective agonists. Bioorg Med Chem Lett 18:2813–2819. https://doi.org/10.1016/j.bmcl.2008.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tosh DK, Finley A, Paoletta S, Moss SM, Gao Z-G, Gizewski ET, Auchampach JA, Salvemini D, Jacobson KA (2014) In vivo phenotypic screening for treating chronic neuropathic pain: modification of C2-arylethynyl group of conformationally constrained A3 adenosine receptor agonists. J Med Chem 57(23):9901–9914. https://doi.org/10.1021/jm501021n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tosh DK, Ciancetta A, Warnick E, O’Connor R, Chen Z, Gizewski E, Crane S, Gao Z-G, Auchampach JA, Salvemini D, Jacobson KA (2016) Purine (N)-methanocarba nucleoside derivatives lacking an exocyclic amine as selective A3 adenosine receptor agonists. J Med Chem 59(7):3249–3263. https://doi.org/10.1021/acs.jmedchem.5b01998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tosh DK, Salmaso V, Rao H, Campbell R, Bitant A, Gao Z-G, Auchampach JA, Jacobson KA (2020) Direct comparison of (N)-methanocarba and ribose-containing 2-arylalkynyladenosine derivatives as A3 receptor agonists. ACS Med Chem Lett 11:1935–1941. https://doi.org/10.1021/acsmedchemlett.9b00637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gao ZG, Teng B, Wu H, Joshi BV, Griffiths GL, Jacobson KA (2009) Synthesis and pharmacological characterization of [125I]MRS1898, a high affinity, selective radioligand for the rat A3 adenosine receptor. Purinergic Signal 5:31–37

    CAS  PubMed  Google Scholar 

  61. Matot I, Einav S, Weininger CF, Pearl RG, Abramovich R, Joshi BV, Jacobson KA (2008) Lung injury following in-vivo reperfusion: outcome at 27 hours post-reperfusion. Anesthesiology 109:269–278

    PubMed  Google Scholar 

  62. Dal Ben D, Buccioni M, Lambertucci C, Kachler S, Falgner N, Marucci G, Thomas A, Cristalli G, Volpini R, Klotz K-N (2014) Different efficacy of adenosine and NECA derivatives at the human A3 adenosine receptor: insight into the receptor activation switch. Biochem Pharmacol 87(2):321–331. https://doi.org/10.1016/j.bcp.2013.10.011

    Article  CAS  PubMed  Google Scholar 

  63. Coppi E, Cherchi F, Lucarini E, Ghelardini C, Pedata F, Jacobson KA, Di Cesare Mannelli L, Pugliese AM, Salvemini D (2021) Uncovering the mechanisms of A3 adenosine receptor-mediated pain control. Int J Mol Sci 22:7952

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Paoletta S, Tosh DK, Finley A, Gizewski E, Moss SM, Gao ZG, Auchampach JA, Salvemini D, Jacobson KA (2013) Rational design of sulfonated A3 adenosine receptor-selective nucleosides as pharmacological tools to study chronic neuropathic pain. J Med Chem 56:5949–5963

    CAS  PubMed  Google Scholar 

  65. Petrelli R, Torquati I, Kachler S, Luongo L, Maione S, Franchetti P, Grifantini M, Novellino E, Lavecchia A, Klotz K-N, Cappellacci L (2015) 5′-C-ethyl-tetrazolyl-N6-substituted adenosine and 2-chloro-adenosine derivatives as highly potent dual acting A1 adenosine receptor agonists and A3 adenosine receptor antagonists. J Med Chem 58(5):2560–2566. https://doi.org/10.1021/acs.jmedchem.5b00074

    Article  CAS  PubMed  Google Scholar 

  66. Ji XD, Melman N, Jacobson KA (1996) Interactions of flavonoids and other phytochemicals with adenosine receptors. J Med Chem 39:781–788

    CAS  PubMed  Google Scholar 

  67. Jacobson KA, Moro S, Manthey JA, West PL, Ji X-D (2002) Interaction of flavones and other phytochemicals with adenosine receptors. Adv Exp Med Biol 505:163–171

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Jiang J-L, van Rhee AM, Chang L, Patchornik A, Evans P, Melman N, Jacobson KA (1997) Structure activity relationships of 4-phenylethynyl-6-phenyl-1,4-dihydropyridines as highly selective A3 adenosine receptor antagonists. J Med Chem 40:2596–2608

    CAS  PubMed  Google Scholar 

  69. Li AH, Moro S, Melman N, Ji X-D, Jacobson KA (1998) Structure activity relationships and molecular modeling of 3,5-diacyl-2,4-dialkylpyridine derivatives as selective A3 adenosine receptor antagonists. J Med Chem 41:3186–3201

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Jacobson KA, Park KS, Jiang J-L, Kim YC, Olah ME, Stiles GL, Ji XD (1997) Pharmacological characterization of novel A3 adenosine receptor-selective antagonists. Neuropharmacology 36:1157–1165

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Jacobson M, Chakravarty PK, Johnson RG, Norton R (1996) Novel selective non-xanthine A3 adenosine receptor antagonists. Drug Dev Res 37:131

    Google Scholar 

  72. Kim YC, de Zwart M, Chang L, Moro S, von Frijtag Drabbe Künzel JK, Melman N, IJzerman AP, Jacobson KA (1998) Derivatives of the triazoloquinazoline adenosine antagonist (CGS15943) having high potency at the human A2B and A3 receptor subtypes. J Med Chem 41:2835–2841

    CAS  PubMed  Google Scholar 

  73. Gao ZG, Suresh RR, Jacobson KA (2021) Pharmacological characterization of DPTN and other selective A3 adenosine receptor antagonists. Purinergic Signal 17:737–746. https://doi.org/10.1007/s11302-021-09823-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Miwatashi S, Arikawa Y, Matsumoto T, Uga K, Kanzaki N, Imai YN, Ohkawa S (2008) Synthesis and biological activities of 4-phenyl-5-pyridyl-1,3-thiazole derivatives as selective adenosine A3 antagonists. Chem Pharm Bull(Tokyo) 56(8):1126–1137

    CAS  PubMed  Google Scholar 

  75. Jacobson KA, Siddiqi SM, Olah ME, Ji XD, Melman N, Bellamkonda K, Meshulam Y, Stiles GL, Kim HO (1995) Structure-activity relationships of 9-alkyladenine and ribose-modified adenosine derivatives at rat A3 adenosine receptors. J Med Chem 38:1720–1735

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Tosh DK, Salmaso V, Rao H, Bitant A, Fisher CL, Lieberman DI, Vorbrüggen H, Reitman ML, Gavrilova O, Gao ZG, Auchampach JA, Jacobson KA (2020) Truncated (N)-methanocarba nucleosides as partial agonists at mouse and human A3 adenosine receptors: affinity enhancement by N6-(2-phenylethyl) substitution. J Med Chem 63:4334–4348

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang Z, Do CW, Avila MY, Peterson-Yatorno K, Stone RA, Gao ZG, Joshi BV, Besada P, Jeong LS, Jacobson KA, Civan MM (2010) Nucleoside-derived antagonists to A3 adenosine receptors lower mouse intraocular pressure and act across species. Exp Eye Res 90:146–154

    CAS  PubMed  Google Scholar 

  78. Jacobson KA, Gao ZG, Tosh DK, Sanjayan GJ, de Castro S (2010) A3 adenosine receptor agonists: history and future perspectives, chapter 6. In: Borea PA (ed) A3 adenosine receptors from cell biology to pharmacology and therapeutics. Springer, pp 93–120

    Google Scholar 

  79. Spinaci A, Buccioni M, Dal Ben D, Maggi F, Marucci G, Francucci B, Santoni G, Lambertucci C, Volpini R (2022) A3 adenosine receptor antagonists with nucleoside structures and their anticancer activity. Pharmaceuticals 15:164. https://doi.org/10.3390/ph15020164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fallot LB, Suresh RR, Fisher CL, Kaufman N, Gao ZG, Auchampach JA, Jacobson KA (2022) Structure activity studies of 1H-imidazo[4,5-c]quinolin-4-amine derivatives as A3 adenosine receptor positive allosteric modulators. J Med Chem 65(22):15238–15262

    CAS  PubMed  Google Scholar 

  81. Ozola V, Thorand M, Diekmann M, Qurishi R, Schumacher B, Jacobson KA, Müller CE (2003) 2-Phenylimidazo[2,1-i]purin-5-ones: structure–activity relationships and characterization of potent and selective inverse agonists at human A3 adenosine receptors. Bioorg Med Chem 11:347–356

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Varani K, Merighi S, Gessi S, Klotz KN, Leung E, Baraldi PG, Cacciari B, Romagnoli R, Spalluto G, Borea PA (2000) [3H]MRE 3008F20: a novel antagonist radioligand for the pharmacological and biochemical characterization of human A3 adenosine receptors. Mol Pharmacol 57:968–975

    CAS  PubMed  Google Scholar 

  83. Mikus EG, Boér K, Timári G, Urbán-Szabó K, Kapui Z, Szeredi J, Gerber K, Szabó T, Bátori S, Finet M, Arányi P, Galzin AM (2013) Interaction of SSR161421, a novel specific adenosine A3 receptor antagonist with adenosine A3 receptor agonists both in vitro and in vivo. Eur J Pharmacol 699(1–3):62–66. https://doi.org/10.1016/j.ejphar.2012.11.046

    Article  CAS  PubMed  Google Scholar 

  84. Azuaje J, Jespers W, Yaziji V, Mallo A, Majellaro M, Caamaño O, Loza MI, Cadavid MI, Brea J, Åqvist J, Sotelo E, Gutiérrez-de-Terán H (2017) Effect of nitrogen atom substitution in a3 adenosine receptor binding: N-(4,6-diarylpyridin-2-yl)acetamides as potent and selective antagonists. J Med Chem 60(17):7502–7511. https://doi.org/10.1021/acs.jmedchem.7b00860

    Article  CAS  PubMed  Google Scholar 

  85. Yaziji V, Rodríguez D, Gutiérrez-de-Terán H, Coelho A, Caamaño O, García-Mera X, Brea J, Loza MI, Cadavid MI, Sotelo E (2011) Pyrimidine derivatives as potent and selective A3 adenosine receptor antagonists. J Med Chem 54(2):457–471. https://doi.org/10.1021/jm100843z

    Article  CAS  PubMed  Google Scholar 

  86. Miranda-Pastoriza D, Bernárdez R, Azuaje J, Prieto-Díaz R, Majellaro M, Tamhankar AV, Koenekoop L, González A, Gioé-Gallo C, Mallo-Abreu A, Brea J, Loza MI, García-Rey A, García-Mera X, Gutiérrez-de-Terán H, Sotelo E (2022) Exploring non-orthosteric interactions with a series of potent and selective A3 antagonists. ACS Med Chem Lett 13(2):243–249. https://doi.org/10.1021/acsmedchemlett.1c00598

    Article  CAS  PubMed  Google Scholar 

  87. Barkan K, Lagarias P, Stampelou M et al (2020) Pharmacological characterisation of novel adenosine A3 receptor antagonists. Sci Rep 10:20781. https://doi.org/10.1038/s41598-020-74521-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Stampelou M, Suchankova A, Tzortzini E, Dhingra L, Barkan K, Lougiakis N, Marakos P, Pouli N, Ladds G, Kolocouris A (2022) Dual A1/A3 adenosine receptor antagonists: binding kinetics and structure−activity relationship studies using mutagenesis and alchemical binding free energy calculations. J Med Chem 65(19):13305–13327

    CAS  PubMed  Google Scholar 

  89. Rautio J, Meanwell N, Di L et al (2018) The expanding role of prodrugs in contemporary drug design and development. Nat Rev Drug Discov 17:559–587. https://doi.org/10.1038/nrd.2018.46

    Article  CAS  PubMed  Google Scholar 

  90. Suresh RR, Jain S, Chen Z, Tosh DK, Ma Y, Podszun MC, Rotman Y, Salvemini D, Jacobson KA (2020) Design and in vivo activity of A3 adenosine receptor agonist prodrugs. Purinergic Signal 16:367–377

    CAS  PubMed  PubMed Central  Google Scholar 

  91. López-Cano M, Filgaria I, Nolen EG, Cabré G, Hernando J, Tosh DK, Jacobson KA, Soler C, Ciruela F (2021) Optical control of adenosine A3 receptor function in psoriasis. Pharmacol Res 170:105731

    PubMed  PubMed Central  Google Scholar 

  92. Besada P, Mamedova LK, Palaniappan KK, Gao ZG, Joshi BV, Jeong LS, Civan MM, Jacobson KA (2006) Nucleoside prodrugs of A3 adenosine receptor agonists and antagonists. Collect Czechoslov Chem Commun 71:912–928

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Salmaso V, Jain S, Jacobson KA (2021) Purinergic GPCR transmembrane residues involved in ligand recognition and dimerization. In: Shukla A (ed) Methods cell biology biomolecular interactions, vol 166, pp 133–159

    Google Scholar 

  94. Haddad F, Sawalha M, Khawaja Y, Najjar A, Karaman R (2017) Dopamine and levodopa prodrugs for the treatment of Parkinson's disease. Molecules 23(1):40

    PubMed  PubMed Central  Google Scholar 

  95. Prokai L, Prokai-Tatri L, Bodor N (2000) Targeting drug to the brain by redox chemical delivery systems. Med Res Rev 20:367–416

    CAS  PubMed  Google Scholar 

  96. Du L, Gao ZG, Paoletta S, Wan TC, Barbour S, van Veldhoven JP, IJzerman AP, Jacobson KA, Auchampach JA (2018) Species differences and mechanism of action of A3 adenosine receptor allosteric modulators. Purinergic Signal 14:59–71

    CAS  PubMed  Google Scholar 

  97. Costanzi S, Siegel J, Tikhonova IG, Jacobson KA (2009) Rhodopsin and the others: a historical perspective on structural studies of G protein-coupled receptors. Curr Pharm Des 15:3994–4002

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Carpenter B, Tate CG (2017) Active state structures of G protein-coupled receptors highlight the similarities and differences in the G protein and arrestin coupling interfaces. Curr Opin Struct Biol 45:124–132. https://doi.org/10.1016/j.sbi.2017.04.01

    Article  CAS  PubMed  Google Scholar 

  99. Draper-Joyce CJ, Bhola R, Wang J, Bhattarai A, Nguyen ATN, Cowie-Kent I, O'Sullivan K, Chia LY, Venugopal H, Valant C, Thal DM, Wootten D, Panel N, Carlsson J, Christie MJ, White PJ, Scammells P, May LT, Sexton PM, Danev R, Miao Y, Glukhova A, Imlach WL, Christopoulos A (2021) Positive allosteric mechanisms of adenosine A1 receptor-mediated analgesia. Nature 597:571–576

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three dimensional models and computational probing of structure function relations in G protein-coupled receptors. Methods Neurosci 25:366–428

    CAS  Google Scholar 

  101. Bai H, Zhang Z, Liu L, Wang X, Song X, Gao L (2022) Activation of adenosine A3 receptor attenuates progression of osteoarthritis through inhibiting the NLRP3/caspase-1/GSDMD induced signalling. J Cell Mol Med 26(15):4230–4243. https://doi.org/10.1111/jcmm.17438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Boia R, Dias PAN, Galindo-Romero C, Ferreira H, Aires ID, Vidal-Sanz M et al (2022) Intraocular implants loaded with A3R agonist rescue retinal ganglion cells from ischemic damage. J Control Release 343:469–481. https://www.sciencedirect.com/science/article/pii/S016836592200075X

    CAS  PubMed  Google Scholar 

  103. Itzhak I, Cohen S, Fishman S, Fishman P (2022) A3 adenosine receptor allosteric modulator CF602 reverses erectile dysfunction in a diabetic rat model. Andrologia:e14498. https://doi.org/10.1111/and.14498

Download references

Acknowledgments

We thank the NIDDK Intramural Res. Program (ZIADK031117) for support.

Compliance with Ethical Standards Conflict of Interest

The author declares that they have no conflict of interest.

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests of a financial or personal nature.

Conflict of Interest

Kenneth A. Jacobson declares that he/she has no conflict of interest. Paola Oliva declares that he/she has no conflict of interest. R. Rama Suresh declares that he/she has no conflict of interest.

Authors’ Contributions

K.A.J., P.O. and R. R. S. wrote, edited, and reviewed the main manuscript text.

Funding

This work was supported by the Intramural Research Program of the National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases for support [ZIADK031117 to K.A.J].

Availability of Data and Materials

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Jacobson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jacobson, K.A., Oliva, P., Suresh, R.R. (2023). A3 Adenosine Receptor Ligands: From Discovery to Clinical Trials. In: Colotta, V., Supuran, C.T. (eds) Purinergic Receptors and their Modulators. Topics in Medicinal Chemistry, vol 41. Springer, Cham. https://doi.org/10.1007/7355_2023_161

Download citation

Publish with us

Policies and ethics

Navigation