Methods and Molecular Tools for Studying Endocytosis in Plants---an Overview

  • Chapter
  • First Online:
Plant Endocytosis

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 1))

Abstract

Proteins of the endocytosis machinery in plants, such as clathrin and adaptor proteins, were isolated and characterized using combinations of molecular biological (cloning and tagging) and biochemical methods (gel filtration, pull-down assays, surface plasmon resonance and immunoblotting). Other biochemical methods, such as cell fractionation and sucrose density gradients, were applied in order to isolate and further characterize clathrin-coated vesicles and endosomes in plants. Endocytosis was visualized in plant cells by using both non-fluorescent and fluorescent markers, and by employing antibodies raised against endosomal proteins or green fluorescent protein-tagged endocytic proteins in combination with diverse microscopic techniques, including confocal laser scanning microscopy and electron microscopy. Genetic and cell biological approaches were used together to address the role of a few proteins potentially involved in endocytosis. Additionally, biochemical and/or biophysical/electrophysiological methods were occasionally combined with microscopic methods (including both in situ and in vivo visualization) in plant endocytosis research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bahaji A, Cornejo MJ, Ortiz-Zapater E, Contreras I, Aniento F (2001) Uptake of endocytic markers by rice cells: variations related to the growth phase. Eur J Cell Biol 80:178–186

    Article  PubMed  Google Scholar 

  2. Bahaji A, Aniento F, Cornejo MJ (2003) Uptake of endocytic marker by rice cells: variations related to osmotic and saline stress. Plant Cell Physiol 44:1100–1111

    Article  Google Scholar 

  3. Baluška F, Hlavacka A, Šamaj J, Palme K, Robinson DG, Matoh T, McCurdy DW, Menzel D, Volkmann D (2002) F-actin-dependent endocytosis of cell wall pectins in meristematic root cells: insights from brefeldin A-induced compartments. Plant Physiol 130:422–431

    Article  PubMed  Google Scholar 

  4. Baluška F, Šamaj J, Hlavacka A, Kendrick-Jones J, Volkmann D (2004) Actin-dependent fluid-phase endocytosis in inner cortex cells of maize root apices. J Exp Bot 55:463–473

    Article  PubMed  Google Scholar 

  5. Baluška F, Baroja-Fernandez E, Pozueta-Romero J, Hlavacka A, Etxeberria E, Šamaj J (2005) Endocytic uptake of nutrients, cell wall molecules, and fluidized cell wall portions into heterotrophic plant cells (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  6. Barth M, Holstein SHE (2004) Identification and functional characterization of Arabidopsis AP180, a binding partner of plant αC-adaptin. J Cell Sci 117:2051–2062

    Article  PubMed  Google Scholar 

  7. Berczi A, Horvath G (2003) Lipid rafts in the plant plasma membrane? Acta Biol Szeged 47:7–10

    Google Scholar 

  8. Blackbourn HD, Jackson AP (1996) Plant clathrin heavy chain: sequence analysis and restricted localization in growing pollen tubes. J Cell Sci 109:777–786

    PubMed  Google Scholar 

  9. Bloch D, Lavy M, Efrat Y, Efroni I, Bracha-Drori K, Abu-Abied M, Sadot E, Yalovsky S (2005) Ectopic expression of an activated RAC in Arabidopsis disrupts membrane cycling. Mol Biol Cell 16:1913–1927

    Article  PubMed  Google Scholar 

  10. Bolte S, Brown S, Satiat-Jeunemaitre B (2004) The N-myristoylated Rab-GTPase m-Rabmc is involved in post-Golgi trafficking events to the lytic vacuole in plant cells. J Cell Sci 117:943–954

    Article  PubMed  Google Scholar 

  11. Boonsirichai K, Sedbrook JC, Chen R, Gilroy S, Masson P (2003) ALTERED RESPONSE TO GRAVITY is a peripheral membrane protein that modulates gravity-induced cytoplasmic alkalinization and lateral auxin transport in plant statocytes. Plant Cell 15:2612–2625

    Article  PubMed  Google Scholar 

  12. Borner GHH, Sherier DJ, Weimar T, Michaelson LV, Hawkins ND, Macaskill A, Napier JA, Beale MH, Lilley KS, Dupree P (2005) Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiol 137:104–116

    Article  PubMed  Google Scholar 

  13. Camacho L, Malho R (2003) Endo=exocytosis in the pollen tube apex is differentially regulated by Ca2+and GTPase. J Exp Bot 54:83–92

    Article  PubMed  Google Scholar 

  14. Carroll AD, Moyen C, van Kesteren WJP, Tooke F, Battey NH, Brownlee C (1998) Ca2+, annexins, and GTP modulate exocytosis from maize root cap protoplasts. Plant Cell 10:1267–1276

    Article  PubMed  Google Scholar 

  15. Da Silva LLP, Taylor JP, Hadlington JL, Hanton SL, Snowden CJ, Fox SJ, Foresti O, Brandizzi F, Denecke J (2005) Receptor salvage from the prevacuolar compartment is essential for efficient vacuolar protein targeting. Plant Cell 17:132–148

    Article  PubMed  Google Scholar 

  16. Depta H, Robinson DG, Holstein SEH, Lützelschwab M, Michalke W (1991) Membrane markers in highly purified clathrin-coated vesicles from Cucurbita hypocotyls. Planta 183:434–442

    Article  Google Scholar 

  17. Derksen J et al. (2002) Growth and cellular organization of Arabidopsis pollen tubes in vitro. Sex Plant Reprod 15:133–139

    Article  Google Scholar 

  18. Emans N, Zimmermann S, Fischer R (2002) Uptake of a fluorescent marker in plant cells is sensitive to brefeldin A and wortmannin. Plant Cell 14:71–86

    Article  PubMed  Google Scholar 

  19. Geldner N, Friml J, Stierhof Y-D, Jürgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428

    Article  PubMed  Google Scholar 

  20. Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230

    Article  PubMed  Google Scholar 

  21. Geldner N (2004) The plant endosomal system – its structure and role in signal transduction and plant development. Planta 219:547–560

    Article  PubMed  Google Scholar 

  22. Gifford ML, Robertson FC, Soares DC, Ingram GC (2005) Arabidopsis CRINKLY4 function, internalization, and turnover are dependent on the extracellular crinky repeat domain. Plant Cell 17:1154–1166

    Article  PubMed  Google Scholar 

  23. Grebe M, Xu J, Möbius W, Ueda T, Nakano T, Geuze HJ, Rook MB, Scheres B (2003) Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr Biol 13:1378–1387

    Article  PubMed  Google Scholar 

  24. Gross A, Kapp D, Nielsen T, Niehaus K (2004) Endocytosis of Xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nicotiana tabacum. New Phytol 165:215–226

    Article  Google Scholar 

  25. Hillmer S, Depta H, Robinson DG (1986) Confirmation of endocytosis in higher plant protoplasts using lectin–gold conjugates. Eur J Cell Biol 41:142–149

    Google Scholar 

  26. Holstein SHE, Drucker M, Robinson DG (1994) Identification of a β-type adaptin in plant clathrin-coated vesicles. J Cell Sci 107:945–953

    PubMed  Google Scholar 

  27. Holstein SE (2002) Clathrin and plant endocytosis. Traffic 3:614–620

    Article  PubMed  Google Scholar 

  28. Homann U (1998) Osmotically induced excursions in the surface area of guard cell protoplasts. Planta 206:329–333

    Article  Google Scholar 

  29. Homann U, Thiel G (1999) Unitary exocytotic and endocytotic events in guard-cell protoplasts during osmotically driven volume changes. FEBS Lett 460:495–499

    Article  PubMed  Google Scholar 

  30. Homann U (2005) Endocytosis in guard cells (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  31. Horn MA, Heinstein PF, Low PS (1990) Biotin-mediated delivery of exogenous macromolecules into soybean cells. Plant Physiol 93:1492–1496

    Google Scholar 

  32. Horn MA, Heinstein PF, Low PS (1992) Characterization of parameters influencing receptor-mediated endocytosis in cultured soybean cells. Plant Physiol 98:673–679

    Google Scholar 

  33. Hubner R, Depta H, Robinson DG (1985) Endocytosis in maize root cap cells: evidence obtained using heavy metal salt solutions. Protoplasma 129:214–222

    Article  Google Scholar 

  34. Hurst AC, Meckel T, Tayefeh S, Thiel G, Homann U (2004) Trafficking of the plant potassium inward rectifier KAT1 in guard cell protoplasts of Vicia faba. Plant J 37:391–397

    Article  PubMed  Google Scholar 

  35. Kubitscheck U, Homann U, Thiel G (2000) Osmotically evoked shrinking of guard-cell protoplasts causes vesicular retrieval of plasma membrane into the cytoplasm. Planta 210:423–431

    PubMed  Google Scholar 

  36. Lazzaro MD, Thomson WW (1992) Endocytosis of lanthanum nitrate in the organic acid-secreting trichomes of chickpea (Cicer arietinum). Am J Bot 79:1113–1118

    Google Scholar 

  37. Meckel T, Hurst AC, Thiel G, Homann U (2004) Endocytosis against high turgor: intact guard cells of Vicia faba constitutively endocytose fluorescently labelled plasma membrane and GFP-tagged K+-channel KAT1. Plant J 39:182–193

    Article  PubMed  Google Scholar 

  38. Mongrand S, Morel J, Laroche J, Claverol S, Carde JP, Hartmann MA, Bonneu M, Simon-Plas F, Lessire R, Bessoule JJ (2004) Lipid rafts in higher plant cells: purification and characterization of Triton X-100-insoluble microdomains from tobacco plasma membrane. J Biol Chem 279:36277–36286

    Article  PubMed  Google Scholar 

  39. Murphy AS, Bandyopadhyay A, Holstein SE, Peer WA (2005) Endocytotic cycling of PM proteins. Annu Rev Plant Biol 56:221–251

    Article  PubMed  Google Scholar 

  40. Ovecka M, Lang I, Baluška F, Ismail A, Illeš P, Lichtscheidl IK (2005a) Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma (in press)

    Google Scholar 

  41. Ovecka M, Lichtscheidl IK (2005) Sterol endocytosis and trafficking in plant cells (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  42. Parton RM, Fischer-Parton S, Watahiki MK, Trewavas AJ (2001) Dynamics of the apical vesicle accumulation and the rate of growth are related in individual pollen tubes. J Cell Sci 114:2685–2695

    PubMed  Google Scholar 

  43. Preuss ML, Serna J, Falbel TG, Bednarek SY, Nielsen E (2004) The Arabidopsis Rab GTPase RabA4b localizes to the tips of growing root hairs. Plant Cell 16:1589–1603

    Article  PubMed  Google Scholar 

  44. Ritzenthaler C, Nebenfuhr A, Movafeghi A, Stussi-Garaud C, Behnia L, Pimpl P, Staehelin LA, Robinson DG (2002) Reevaluation of the effects of brefeldin A on plant cells using tobacco Bright Yellow 2 cells expressing Golgi-targeted green fluorescent protein and COPI antisera. Plant Cell 14:237–261

    Article  PubMed  Google Scholar 

  45. Russinova E, Borst J-W, Kwaaitaal M, Cano-Delgado A, Yin Y, Chory J, de Vries SC (2004) Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1). Plant Cell 16:3216–3229

    Article  PubMed  Google Scholar 

  46. Ryan TA, Reuter H, Smith SJ (1997) Optical detection of a quantal presynaptic membrane turnover. Nature 388:478–482

    Article  PubMed  Google Scholar 

  47. Šamaj J, Šamajová O, Peters M, Baluška F, Lichtscheidl I, Knox JP, Volkmann D (2000) Immunolocalization of LM2 arabinogalactan-protein epitope associated with endomembranes of plant cells. Protoplasma 212:186–196

    Article  Google Scholar 

  48. Šamaj J, Ovecka M, Hlavacka A, Lecourieux F, Meskiene I, Lichtscheidl I, Lenart P, Salaj J, Volkmann D, Bogre L, Baluška F, Hirt H (2002) Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth. EMBO J 21:3296–3306

    Article  PubMed  Google Scholar 

  49. Šamaj J, Baluška F, Voigt B, Schlicht M, Volkmann D, Menzel D (2004) Endocytosis, actin cytoskeleton and signaling. Plant Physiol 135:1150–1161

    Article  PubMed  Google Scholar 

  50. Šamaj J, Read N, Baluška F (2005) Endocytosis in plants and filamentous fungi. Trends Cell Biol (in press)

    Google Scholar 

  51. Scheele U, Holstein SHE (2002) Functional evidence for the identification of an Arabidopsis clathrin light chain polypeptide. FEBS Lett 514:355–360

    Article  PubMed  Google Scholar 

  52. Shah K, Russinova E, Gadella TW Jr, Willemse J, De Vries SC (2002) The Arabidopsis kinase-associated protein phosphatase controls internalization of the somatic embryogenesis receptor kinase. Genes Dev 16:1707–1720

    Article  PubMed  Google Scholar 

  53. Shope JC, DeWald DB, Mott KA (2003) Changes in surface area of intact guard cells are correlated with membrane internalization. Plant Physiol 133:1314–1321

    Article  PubMed  Google Scholar 

  54. Sohn EJ, Kim ES, Zhao M, Kim SJ, Kim H, Kim Y-W, Lee YJ, Hillmer S, Sohn U, Jiang L, Hwang I (2003) Rha1, an Arabidopsis Rab5 homolog, plays a critical role in the vacuolar trafficking of soluble cargo proteins. Plant Cell 15:1057–1070

    Article  PubMed  Google Scholar 

  55. Timmers AC, Auriac MC, de Billy F, Truchet G (1998) Nod factor internalization and microtubular cytoskeleton changes occur concomitantly during nodule differentiation in alfalfa. Development 125:339–349

    PubMed  Google Scholar 

  56. Tse YC, Mo B, Hillmer S, Zhao M, Lo SW, Robinson DG, Jiang L (2004) Identification of multivesicular bodies as prevacuolar compartments in Nicotiana tabacum BY-2 cells. Plant Cell 16:672–693

    Article  PubMed  Google Scholar 

  57. Ueda T, Yamaguchi M, Uchimiya H, Nakano A (2001) Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana. EMBO J 20:4730–4741

    Article  PubMed  Google Scholar 

  58. Ueda T, Uemura T, Sato MH, Nakano A (2004) Functional differentiation of endosomes in Arabidopsis cells. Plant J 40:783–789

    Article  PubMed  Google Scholar 

  59. Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sato MH (2004) Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct Funct 29:49–65

    Article  PubMed  Google Scholar 

  60. Villanueva MA, Taylor J, Sui X, Griffing LR (1993) Endocytosis in plant protoplasts: visualization and quantification of fluid-phase endocytosis using silver-enhanced bovine serum albumin–gold. J Exp Bot 44:275–281

    Google Scholar 

  61. Voigt B, Timmers ACJ, Šamaj J, Hlavacka A, Ueda T, Preuss M, Nielsen E, Mathur J, Emans N, Stenmark H, Nakano A, Baluška F, Menzel D (2005) Actin-propelled motility of endosomes is tightly linked to polar tip-growth of root hairs. Eur J Cell Biol 84:609–621

    Article  PubMed  Google Scholar 

  62. Voigt B, Timmers T, Šamaj J, Müller J, Baluška F, Menzel D (2005) GFP-FABD2 fusion construct allows in vivo visualization of the dynamic actin cytoskeleton in all cells of Arabidopsis seedlings. Eur J Cell Biol 84:595–608

    Article  PubMed  Google Scholar 

  63. Walther A, Wendland J (2004) Apical localization of actin patches and vacuolar dynamics in Ashbya gossypii depend on the WASP homolog Wal1p. J Cell Sci 117:4947–4958

    Article  PubMed  Google Scholar 

  64. Xu J, Scheres B (2005) Dissection of Arabidopsis ADP-Ribosylation Factor 1 function in epidermal cell polarity. Plant Cell 17:525–536

    Article  PubMed  Google Scholar 

  65. Yano K, Matsui S, Tsuchiya T, Maeshima M, Kutsuna N, Hasezawa S, Moriyasu Y (2004) Contribution of the plasma membrane and central vacuole in the formation of autolysosomes in cultured tobacco cells. Plant Cell Physiol 45:951–957

    Article  Google Scholar 

Download references

Acknowledgments

I thank Diedrik Menzel for critical reading of the manuscript and Ursulla Mettbach and Claudia Heym for excellent technical assistance, as well as to Mary Preuss and Erik Nielsen for providing Fig. 1a. This work was supported by a grant from the Slovak Grant Agency APVT (grant no. APVT-51-002302), Bratislava, Slovakia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Šamaj .

Editor information

Jozef Šamaj František Baluška Diedrik Menzel

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Šamaj, J. Methods and Molecular Tools for Studying Endocytosis in Plants---an Overview. In: Šamaj, J., Baluška, F., Menzel, D. (eds) Plant Endocytosis. Plant Cell Monographs, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_002

Download citation

Publish with us

Policies and ethics

Navigation