Sustainable Low Carbon and Bioaugmentation Strategies for Bioremediation of Oil-Contaminated Acidic Wetlands

  • Chapter
  • First Online:
Soil Remediation Science and Technology

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 130))

  • 27 Accesses

Abstract

This chapter delves into the critical issue of remediating oil-contaminated acidic wetlands, which pose significant ecological threats globally. These wetlands, vulnerable to pollution, particularly from hydrocarbons, have driven the adoption of various remediation strategies, prominently bioremediation techniques. Biostimulation, enhanced natural attenuation, and bioaugmentation have been at the forefront of efforts to restore these contaminated ecosystems. Despite the implementation of these bioremediation approaches, studies have often revealed only moderate success rates, with removal efficiencies averaging around 40% to 50% within a typical 6-month timeframe. To enhance the effectiveness of these methods, extensive research has been conducted to stimulate microbial activity, resulting in some strategies achieving removal rates between 55% and 80% within shorter durations. This chapter comprehensively reviews the prevalent remediation methods employed in acidic wetlands, with a specific focus on the Niger Delta wetlands in Nigeria. It critically analyses existing literature to provide an updated overview of the advancements, challenges, and limitations concerning the remediation of these acidic wetlands contaminated with petroleum hydrocarbons. Furthermore, it examines the emerging trends in remediation techniques, emphasizing sustainable bioremediation approaches and their successes in contaminated wetland soils. Overall, this chapter aims to offer a comprehensive understanding of the current state of remediation strategies for oil-contaminated acidic wetlands. By assessing the advancements and constraints in this field, it seeks to contribute to the development of more effective and sustainable techniques to restore these fragile ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 223.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delgado A, Pérez JC, Gallo SC, Loaiza-Usuga JC (2019) Bioremediation (biostimulation and bioaugmentation) of oil spills contaminated soils under tropical humid forest. Carpath J Earth Environ Sci 14(1):165–170

    Article  Google Scholar 

  2. Ezenne GI, Nwoke OA, Ezikpe DE, Obalum SE, Ugwuishiwu BO (2014) Use of poultry drop**s for remediation of crude-oil-polluted soils: effects of application rate on total and poly-aromatic hydrocarbon concentrations. Int Biodeter Biodegr 92:57–65

    Article  CAS  Google Scholar 

  3. Redfern LK, Gardner CM, Hodzic E, Ferguson PL, Hsu-Kim H, Gunsch CK (2019) A new framework for approaching precision bioremediation of PAH contaminated soils. J Hazard Mater 378:1–8

    Article  Google Scholar 

  4. Ayotamuno JM, Okparanma RN, Amadi F (2011) Enhanced remediation of an oily sludge with saline water. Afr J Environ Sci Technol 5(4):262–267

    Google Scholar 

  5. Chikere CB, Tekere M, Adeleke R (2019) Enhanced microbial hydrocarbon biodegradation as stimulated during field-scale landfarming of crude oil-impacted soil. Sustain Chem Pharm 14:1–11

    Google Scholar 

  6. John RC, Itah AY, Essien JP, Ikpe DI (2011) Fate of nitrogen-fixing bacteria in crude oil contaminated wetland Ultisol. Bull Environ Contam Toxicol 87:343–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Oyetibo GO, Ilori MO, Adebusoye SA, Obayori OS, Amund OO (2010) Bacteria with dual resistance to elevated concentrations of heavy metals and antibiotics in Nigerian contaminated systems. Environ Monit Assess 168(1–4):305–314

    Article  CAS  PubMed  Google Scholar 

  8. Okoye AU, Chikere CB, Okpokwasili GC (2020) Isolation and characterization of hexadecane degrading bacteria from oil- polluted soil in Gio community, Niger Delta, Nigeria. Sci Afr 9:1–9

    Google Scholar 

  9. Essien O, John I (2011) Impact of crude-oil spillage pollution and chemical remediation on agricultural soil properties and crop growth. J Appl Sci Environ Manag 14(4):1–14

    Google Scholar 

  10. John RC, Okpokwasili GC (2012) Crude oil-degradation and plasmid profile of nitrifying bacteria isolated from oil-impacted mangrove sediment in The Niger Delta of Nigeria. Bull Environ Contam Toxicol 88(6):1020–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ngene S, Tota-maharaj K (2019) Environmental technologies for remediation of contaminated lands in The Niger Delta region of Nigeria: opportunities for ecosystem services to host communities. Environmental design and management international conference proceedings, pp 1–12. https://uwe-repository.worktribe.com/output/1779177

  12. Brown DM, Bonte M, Gill R, Dawick J, Boogaard PJ (2017) Heavy hydrocarbon fate and transport in the environment. Q J Eng Geol Hydrogeol 50:333–346

    Article  CAS  Google Scholar 

  13. Chikere CB, Azubuike CC, Fubara EM (2017) Shift in microbial group during remediation by enhanced natural attenuation (RENA) of a crude oil-impacted soil: a case study of Ikarama community, Bayelsa, Nigeria. Biotechnology 7(2):1–11

    Google Scholar 

  14. Egobueze FE, Ayotamuno MJ, Chukwu**du MAI, Chibogwu E, Okparanma RN (2019) Effects of organic amendment on some soil physicochemical characteristics and vegetative properties of Zea mays in wetland soils of The Niger Delta impacted with crude oil. Int J Recycl Org Waste Agric 8(s1):423–435

    Article  Google Scholar 

  15. Orji FA, Ibiene AA, Okerentugba PO (2013) Bioremediation of petroleum hydrocarbon-polluted mangrove swamps using nutrient formula produced from water hyacint (Eicchornia crassipes). Am J Environ Sci 9(4):348–366

    Article  CAS  Google Scholar 

  16. Garcia-blanco S, Venosa AD, Suidan MT, Lee K, Cobanli S, Haines JR (2007) Biostimulation for the treatment of an oil-contaminated coastal salt marsh. Biodegradation 18:1–15

    Article  CAS  PubMed  Google Scholar 

  17. Nwankwegu AS, Orji MU, Onwosi CO (2016) Studies on organic and in-organic biostimulants in bioremediation of diesel-contaminated arable soil. Chemosphere 162:148–156

    Article  CAS  PubMed  Google Scholar 

  18. Okafor CP, Udemang NL, Chikere CB, Akaranta O, Ntushelo K (2021) Indigenous microbial strains as bioresource for remediation of chronically polluted Niger Delta soils. Scientific African 11:1–13

    Article  Google Scholar 

  19. Tiralerdpanich P, Sonthiphand P, Luepromchai E (2018) Potential microbial consortium involved in the biodegradation of diesel, hexadecane and phenanthrene in mangrove sediment explored by metagenomics analysis. Mar Pollut Bull 133:595–605

    Article  CAS  PubMed  Google Scholar 

  20. Akpoveta V, Osakwe S, Egharevba F, Medjor W, Asia I, Ize-Iyamu O (2012) Surfactant enhanced soil washing technique and its kinetics on the remediation of crude oil contaminated soil. Pac J Sci Technol 13(1):443–456

    Google Scholar 

  21. Ekperusi AO, Nwachukwu EO, Sikoki FD (2020) Assessing and modelling the efficacy of Lemna paucicostata for the phytoremediation of petroleum hydrocarbons in crude oil-contaminated wetlands. Sci Rep 10(1):1–9

    Article  Google Scholar 

  22. Nkereuwem ME, Fagbola O, Okon IE, Edem ID, Adeleye AO, Victor O (2020) Influence of a mycorrhizal fungus and mineral fertilizer on the performance of Costus lucanusianus under crude oil contaminated soil. Novel Res Microbiol J 4:808–824

    Article  Google Scholar 

  23. O**naka C, Osuji L (2012) Remediation of hydrocarbons in crude oil-contaminated soils using Fenton’s reagent. Environ Monit Assess 184:6527–6540

    Article  CAS  PubMed  Google Scholar 

  24. Rosik-Dulewska C, Krzys̈ko-Lupicka T, Ciesielczuk T, Kręcidło L (2015) Hydrogen peroxide as a biodegradation stimulator in remediation processes of soils heavily contaminated with petrochemicals. Pol J Chem Technol 17(2):17–22

    Article  CAS  Google Scholar 

  25. Zhang X, Liu X, Liu S, Liu F, Chen L, Xu G, Cao Z (2011) Responses of Scirpus triqueter, soil enzymes and microbial community during phytoremediation of pyrene contaminated soil in simulated wetland. J Hazard Mater 193:45–51

    Article  CAS  PubMed  Google Scholar 

  26. Nwaichi EO, Uzazobona MA (2011) Estimation of the CO2 level due to gas flaring in The Niger Delta. Res J Environ Sci 5(6):565–572

    Article  CAS  Google Scholar 

  27. Ugochukwu UC, Ochonogor A, Jidere CM, Agu C, Nkoloagu F, Ewoh J, Okwu-delunzu VU (2018) Exposure risks to polycyclic aromatic hydrocarbons by humans and livestock (cattle) due to hydrocarbon spill from petroleum products in Niger-delta wetland. Environ Int 115:38–47

    Article  CAS  PubMed  Google Scholar 

  28. Fubara-Manuel I, Igoni AH, Jumbo RB (2017) Performance of irrigated maize in a crude-oil polluted soil remediated by three nutrients in Nigeria’s Niger Delta. Am J Eng Res 6(12):180–185

    Google Scholar 

  29. Ruley JA, Amoding A, Tumuhairwe JB, Basamba TA, Opolot E (2020) Enhancing the phytoremediation of hydrocarbon-contaminated soils in the sudd wetlands, South Sudan, using organic manure. Appl Environ Soil Sci 2020:1–8

    Article  Google Scholar 

  30. Feng L, Jiang X, Huang Y, Wen D, Fu T (2021) Petroleum hydrocarbon-contaminated soil bioremediation assisted by isolated bacterial consortium and sophorolipid. Environ Pollut 273:1–8

    Article  Google Scholar 

  31. Lee K, Doe KG, Lee LEJ, Suidan MT, Venosa AD (2001) Remediation of an oil-contaminated experimental freshwater wetland: II. Habitat recovery and toxicity reduction. International Oil Spill Conference, IOSC, pp 323–238. https://doi.org/10.7901/2169-3358-2001-1-323

  32. Ngene S, Tota-Maharaj K (2020) Effectiveness of sand filtration and activated carbon in oilfield wastewater treatment. Int J Chem Eng Res 7(2):13–23

    Article  Google Scholar 

  33. Camila BC, Jordan C, Zhe G, Hijmans RJ (2020) Spatial variation in fertilizer price in sub-Saharan Africa. PLoS One 15(1):1–20

    Google Scholar 

  34. Cottin N, Merlin G (2008) Removal of PAHs from laboratory columns simulating the humus upper layer of vertical flow constructed wetlands. Chemosphere 73(5):711–716

    Article  CAS  PubMed  Google Scholar 

  35. Zabbey N, Sam K, Onyebuchi AT (2017) Remediation of contaminated lands in The Niger Delta, Nigeria: prospects and challenges. Sci Total Environ 586:952–965

    Article  CAS  PubMed  Google Scholar 

  36. Oghoje SU, Ukpebor JE, Ukpebor EE, Ejeomo C (2020) Comparison of the effects of two forms of organic stimulation on the bioremediation of monocyclic- aromatic hydrocarbon in soils. J Chem Soc Niger 45(3):555–566

    Google Scholar 

  37. Ubochi KC, Ibekwe VI, Ezeji EU (2006) Effect of inorganic fertilizer on microbial utilization of hydrocarbons on oil contaminated soil. Afr J Biotechnol 5(17):1584–1587

    CAS  Google Scholar 

  38. Udosen ED, Essien JP, Ubom RM (2001) Bioamendment of petroleum contaminated ultisol: effect on oil content, heavy metals and pH of tropical soil. J Environ Sci 13(1):92–98

    CAS  Google Scholar 

  39. Asquith EA, Geary PM, Nolan AL, Evans CA (2012) Comparative bioremediation of petroleum hydrocarbon-contaminated soil by biostimulation, bioaugmentation and surfactant addition. J Environ Sci Eng 1(5):637–650

    Google Scholar 

  40. Demelza MV, Gallego JLR, Pelaez AI, Fernandez-de-Cordoba G, Moreno J, Muñoz D, Sanchez J (2007) Engineered in situ bioremediation of soil and groundwater polluted with weathered hydrocarbons. Eur J Soil Biol 43(5–6):310–321

    Google Scholar 

  41. Abu GO, Dike PO (2008) A study of natural attenuation processes involved in a microcosm model of a crude oil-impacted wetland sediment in The Niger Delta. Bioresour Technol 99(11):4761–4767

    Article  CAS  PubMed  Google Scholar 

  42. Wei Z, Wang JJ, Gaston LA, Li J, Fultz LM, DeLaune RD, Dodla SK (2020) Remediation of crude oil-contaminated coastal marsh soil: integrated effect of biochar, rhamnolipid biosurfactant and nitrogen application. J Hazard Mater 396:1–13

    Article  Google Scholar 

  43. Gazey C (2018) Effects of soil acidity. Department of primary industries and regional development: agriculture and food. WA Publishers, Australia

    Google Scholar 

  44. Yang X, He Q, Guo F, Sun X, Zhang J, Chen Y (2021) Impacts of carbon-based nanomaterials on nutrient removal in constructed wetlands: microbial community structure, enzyme activities, and metabolism process. J Hazard Mater 401:123270

    Article  CAS  PubMed  Google Scholar 

  45. Kuppusamy S, Thavamani P, Megharaj M, Lee YB, Naidu R (2016) Isolation and characterization of polycyclic aromatic hydrocarbons (PAHs) degrading, pH tolerant, N-fixing and P-solubilizing novel bacteria from manufactured gas plant (MGP) site soils. Environ Technol Innov 6:204–219

    Article  Google Scholar 

  46. Akpoka OA, Erifeta GO, Imade OS, Okafor-Elenwo EJ, Enaigbe AA, Abolarin DS (2020) Isolation and characterization of crude oil degrading bacteria in association with microalgae in saver pit from Egbaoma flow station, Niger Delta, Nigeria. Arch Ecotoxicol 2(2):12–16

    Article  Google Scholar 

  47. Puntus IF, Borzova OV, Funtikova TV, Suzina NE, Egozarian NS, Polyvtseva VN, Solyanikova IP (2018) Contribution of soil bacteria isolated from different regions into crude oil and oil product degradation. J Soil Sediment 19:3166–3177

    Article  Google Scholar 

  48. Ali W, Mao K, Zhang H, Junaid M, Xu N, Rasool A, Yang Z (2020) Comprehensive review of the basic chemical behaviours, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries. J Hazard Mater 397(3):1–24

    Google Scholar 

  49. Poi G, Aburto-Medina A, Mok PC, Ball AS, Shahsavari E (2017) Large scale bioaugmentation of soil contaminated with petroleum hydrocarbons using a mixed microbial consortium. Ecol Eng 102:64–71

    Article  Google Scholar 

  50. Cao Z, Liu X, Zhang X, Chen L, Liu S, Hu Y (2012) Short-term effects of diesel fuel on rhizosphere microbial community structure of native plants in Yangtze estuarine wetland. Environ Sci Pollut Res 19(6):2179–2185

    Article  CAS  Google Scholar 

  51. ** X, Tian W, Liu Q, Qiao K, Zhao J, Gong X (2017) Biodegradation of the benzo[a]pyrene-contaminated sediment of the Jiaozhou Bay wetland using Pseudomonas sp. immobilization. Mar Pollut Bull 117(1–2):283–290

    Article  CAS  PubMed  Google Scholar 

  52. Shao** K, Zhiwei D, Bingchen W, Huihui W, Jialiang L (2021) Changes of sensitive microbial community in oil polluted soil in the coastal area in Shandong, China for ecorestoration. Ecotoxicol Environ Saf 207:1–9

    Article  Google Scholar 

  53. Okoro CC (2010) Enhanced bioremediation of hydrocarbon contaminated mangrove swamp in the Nigerian oil rich Niger Delta using seawater microbial inocula amended with crude biosurfactants and micronutrients. Nat Sci 8(8):195–206

    Google Scholar 

  54. Olukunle OF, Babajide O, Boboye B (2015) Effects of temperature and pH on the activities of catechol 2,3-dioxygenase obtained from crude oil contaminated soil in Ilaje, Ondo State, Nigeria. Open Microbiol J 9(1):84–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thomas GE, Cameron TC, Campo P, Clark DR, Coulon F, Gregson BH (2020) Bacterial community legacy effects following the Agia Zoni II oil-spill, Greece. Front Microbiol 11:1–15

    Article  Google Scholar 

  56. Eze CN, Orjiakor PI (2020) Evaluation of the effects of bioaugmentation and biostimulation on the vegetative growth of Zea mays grown in crude oil contaminated sandy loam soil. J Mater Environ Sci 11(5):695–703

    CAS  Google Scholar 

  57. Wokem VC, Madufuro C (2020) Application of cowdung and sawdust as biostimulants for enhanced bioremediation of diesel contaminated soil. J Appl Sci Environ Manag 24(1):49–57

    CAS  Google Scholar 

  58. Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manage 71(2):95–122

    Article  PubMed  Google Scholar 

  59. Zou J, Dai Y, Wang X, Ren Z, Tian C, Pan K, Fu H (2013) Structure and adsorption properties of sewage sludge-derived carbon with removal of inorganic impurities and high porosity. Bioresour Technol 142:209–217

    Article  CAS  PubMed  Google Scholar 

  60. Edema CU, Idu TE, Edema MO (2011) Remediation of soil contaminated with polycyclic aromatic hydrocarbons from crude oil. Afr J Biotechnol 10(7):1146–1149

    CAS  Google Scholar 

  61. Al-mutairi N, Bufarsan A, Al-rukaibi F (2008) Ecorisk evaluation and treatability potential of soils contaminated with petroleum hydrocarbon-based fuels. Chemosphere 74(1):142–148

    Article  CAS  PubMed  Google Scholar 

  62. Liang J, Tang S, Gong J, Zeng G, Tang W (2020) Responses of enzymatic activity and microbial communities to biochar/compost amendment in sulfamethoxazole polluted wetland soil. J Hazard Mater 385:1–13

    Article  Google Scholar 

  63. CL:AIRE (2022). Resilience and adaptation for sustainable remediation. SuRF-UK bulletin, CL:AIRE, Reading Business Centre, Fountain House, Queens Walk, Reading, pp 1–5

    Google Scholar 

  64. Yap HS, Zakaria NN, Zulkharnain A, Sabri S, Gomez-Fuentes C, Ahmad SA (2021) Bibliometric analysis of hydrocarbon bioremediation in cold regions and a review on enhanced soil bioremediation. Biology 10:1–29

    Article  Google Scholar 

  65. Ibeto C, Omoni V, Fagbohungbe M, Semple K (2020) Impact of digestate and its fractions on mineralization of 14C-phenanthrene in aged soil. Ecotoxicol Environ Saf 195:1–8

    Article  Google Scholar 

  66. Ye S, Zeng G, Wu H, Liang J, Zhang C, Dai J, Yu J (2019) The effects of activated biochar addition on remediation efficiency of co-composting with contaminated wetland soil. Resour Conserv Recycl 140:278–285

    Article  Google Scholar 

  67. Tian W, Zhao J, Zhou Y, Qiao K, ** X, Liu Q (2017) Effects of root exudates on gel-beads/reeds combination remediation of high molecular weight polycyclic aromatic hydrocarbons. Ecotoxicol Environ Saf 135:158–164

    Article  CAS  PubMed  Google Scholar 

  68. Battaglia A, Calace N, Nardi E, Petronio BM, Pietroletti M (2007) Reduction of Pb and Zn bioavailable forms in metal polluted soils due to paper mill sludge addition. Effects on Pb and Zn transferability to barley. Bioresour Technol 98(16):2993–2999

    Article  CAS  PubMed  Google Scholar 

  69. Taiwo AM, Gbadebo AM, Oyedepo JA, Ojekunle ZO, Alo OM, Oyeniran AA, Taiwo OT (2016) Bioremediation of industrially contaminated soil using compost and plant technology. J Hazard Mater 304:166–172

    Article  CAS  PubMed  Google Scholar 

  70. Beesley L, Moreno-jiménez E, Gomez-eyles JL (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158:2282–2287

    Article  CAS  PubMed  Google Scholar 

  71. Delgado C, Jiménez-Ayuso N, Frutos I, Gárate A, Eymar E (2013) Cadmium and lead bioavailability and their effects on polycyclic aromatic hydrocarbons biodegradation by spent mushroom substrate. Environ Sci Pollut Res 20(12):8690–8699

    Article  Google Scholar 

  72. Guo J, **aoying W, Yang J, Fan T (2020) Removal of benzo(a)pyrene in polluted aqueous solution and soil using persulfate activated by corn straw biochar. J Environ Manage 272:1–10

    Article  Google Scholar 

  73. Kandasamy S, Narayanan M, He Z, Liu G, Ramakrishnan M, Thangavel P, Pugazhendhi A, Raja R, Carvalho IS (2021) Current strategies and prospects in algae for remediation and biofuels: an overview. Biocatal Agric Biotechnol 35:1–15

    Article  Google Scholar 

  74. Kuppusamy S, Palanisami T, Megharaj M, Venkateswarlu K, Naidu R (2017) In situ remediation approaches for the management of contaminated sites: a comprehensive overview. Rev Environ Contam Toxicol 236:1–115

    Google Scholar 

  75. Cerniglia CE (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J Ind Microbiol Biotechnol 19(5–6):324–333

    Article  CAS  PubMed  Google Scholar 

  76. Gupta S, Pathak B, Fulekar MH (2015) Molecular approaches for biodegradation of polycyclic aromatic hydrocarbon compounds: a review. Rev Environ Sci Biotechnol 14(2):241–269

    Article  CAS  Google Scholar 

  77. Gielnik A, Pechaud Y, Huguenot D, Cébron A, Esposito G, van Hullebusch ED (2019) Bacterial seeding potential of digestate in bioremediation of diesel contaminated soil. Int Biodeter Biodegr 143:1–14

    Article  Google Scholar 

  78. Jumbo RB, Coulon F, Cowley T, Azuazu I, Atai E, Bortone I, Jiang Y (2022) Evaluating different soil amendments as bioremediation strategy for wetland soil contaminated by crude oil. Sustain For 14:16568

    Article  CAS  Google Scholar 

  79. Phillips TM, Liu D, Seech AG, Lee H, Trevors JT (2000) Monitoring bioremediation in creosote-contaminated soils using chemical analysis and toxicity tests. J Ind Microbiol Biotechnol 24:132–139

    Article  CAS  Google Scholar 

  80. National Remediation Framework (2018) Guideline on establishing remediation objectives. CRC for Contamination Assessment and Remediation of the Environment, vol 1, pp 1–83

    Google Scholar 

  81. Chen Y, Liu X, Yuan S, Dong F, Xu J, Wu X, Zheng Y (2022) Accumulation of epoxiconazole from soil via oleic acid-embedded cellulose acetate membranes and bioavailability evaluation in earthworms (Eisenia fetida). Environ Pollut 292(Part A):1–8. https://doi.org/10.1016/j.envpol.2021.118283

    Article  CAS  Google Scholar 

  82. Hankard PK, Claus S, Julian W, Claire W, Samantha KF, David JS, Jason MW (2004) Biological assessment of contaminated land using earthworm biomarkers in support of chemical analysis. Sci Total Environ 330:9–20

    Article  CAS  PubMed  Google Scholar 

  83. Lajoie CA, Lin SC, Nguyen H, Kelly CJ (2002) Ecotoxicity testing protocol using a bioluminescent reporter bacterium from activated sludge. J Microbiol Methods 50:273–282

    Article  CAS  PubMed  Google Scholar 

  84. Palmer G, McFadzean R, Killham K, Sindair A, Paton GI (1998) Use of lux-based biosensors for rapid diagnosis of pollutants in arable soils. Chemosphere 36(12):2683–2697

    Article  CAS  Google Scholar 

  85. Haider FU, Ejaz M, Cheema SA, Khan MI, Zhao B, Liqun C, Salim MA, Naveed M, Khan N, Avelino D, Mustafa A (2021) Phytotoxicity of petroleum hydrocarbons: sources, impacts and remediation strategies. Environ Res 197:1–22

    Article  Google Scholar 

  86. Ying W, Jiang F, Qianxin LIN, ** W (2013) Effects of crude oil contamination on soil physical and chemical properties in Momoge wetland of China. Chin Geogr 23(6):708–715

    Article  Google Scholar 

  87. Zhang L, Rylott EL, Bruce NC, Strand SE (2019) Genetic modification of western wheatgrass (Pascopyrum smithii) for the phytoremediation O guidelines for selected pollutants. WHO, Geneva, pp 1–484

    Google Scholar 

  88. Wuana RA, Okieimen FE (2010) Phytoremediation potential of maize (Zea mays). A review. Afr Stud Popul Health 6(4):275–287

    Google Scholar 

  89. Chiwetalu UJ, Mbajiorgu CC, Ogbuagu NJ (2020) Remedial ability of maize (Zea-Mays) on lead contamination under potted condition and non-potted field soil condition. J Bioresour Bioprod 5(1):51–59

    Article  Google Scholar 

  90. Cipullo S, Negrin I, Claveau L, Snapir B, Tardif S, Pulleyblank C, Coulon F (2019) Linking bioavailability and toxicity changes of complex chemicals mixture to support decision making for remediation endpoint of contaminated soils. Sci Total Environ 650:2150–2163

    Article  CAS  PubMed  Google Scholar 

  91. Ren L, Zeiler LF, Dixon DG, Greenberg BM (1996) Photoinduced effects of polycyclic aromatic hydrocarbons on brassica napus (canola) during germination and early seedling development. Ecotoxicol Environ Saf 33(1):73–80

    Article  CAS  PubMed  Google Scholar 

  92. Baek K, Kim H, Oh H, Yoon B, Kim J, Lee I (2004) Effects of crude oil, oil components, and bioremediation on plant growth. J Environ Sci Health 39(9):2465–2472

    Article  Google Scholar 

  93. Maliszewska-Kordybach B, Smreczak B (2003) Habitat function of agricultural soils as affected by heavy metals and polycyclic aromatic hydrocarbons contamination. Environ Int 28(8):719–728

    Article  CAS  PubMed  Google Scholar 

  94. Osim OO, Oniah MO (2023) Efficiency of resource use in rainfed maize production system by small-scale farmers in central agricultural zone of Cross River state, Nigeria. Asian J Agric Ext Econ Sociol 41(4):96–100

    Google Scholar 

  95. Masoni A, Mariotti M, Ercoli L (2002) Maize growth and nutrient uptake as affected by root zone volume. Ital J Agron 1(2):95–102

    Google Scholar 

  96. Khan MAI, Biswas B, Smith E, Naidu R, Megharaj M (2018) Toxicity assessment of fresh and weathered petroleum hydrocarbons in contaminated soil – a review. Chemosphere 212:755–767

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jumbo, R.B., Atai, E., Azuazu, I., Bortone, I., Coulon, F., Jiang, Y. (2024). Sustainable Low Carbon and Bioaugmentation Strategies for Bioremediation of Oil-Contaminated Acidic Wetlands. In: Ortega-Calvo, J.J., Coulon, F. (eds) Soil Remediation Science and Technology. The Handbook of Environmental Chemistry, vol 130. Springer, Cham. https://doi.org/10.1007/698_2024_1077

Download citation

Publish with us

Policies and ethics

Navigation