Remediation of Soils Polluted by Urban Settings

  • Chapter
  • First Online:
Soil Remediation Science and Technology

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 130))

  • 15 Accesses

Abstract

Metropolitan soil challenges reflect the rapid urbanization and globalization pressures, including the generation of toxic by-products, physical disturbances, and changes in the abiotic and biotic environment. Thus, it is crucial to remediate and sustainably use urban soil and to support the maintenance of natural ecosystem services within the urban environment. This chapter focuses on the remediation and management approaches for soil polluted by urban settings. First, the characteristics of urban soil are defined by describing pedogenic evolution, various technogenic substrates, and their functions in providing ecosystem services. Subsequently, soil challenges within the urban setting are discussed, with a focus on the various sources of contamination, the issues related to sealed soils, and the formation of heat islands. Finally, the most recent strategies for urban soil remediation and management, including remote sensing, biomonitoring, the sponge city approach, and the use of waste-based soil amendments, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. FAO/ISRIC/ISSS (1998) World Reference Base for Soil Resources. World Soil Resources Report, #84. FAO, Rome, 88

    Google Scholar 

  2. IUSS Working Group WRB (2022) World Reference Base for soil resources. International soil classification system for naming soils and creating legends for soil maps.4th edn. International Union of Soil Sciences (IUSS), Vienna

    Google Scholar 

  3. European Commission (2006) Proposal for a directive of the European Parliament and of the Council establishing a framework for the protection of soil and amending Directive 2004/35/EC, 30 p. ec.europa.eu/environment/soil/pdf/com_2006_0232_en.pdf

    Google Scholar 

  4. O’Riordan R, Davies J, Stevens C, Quinton JN, Boyko C (2021) The ecosystem services of urban soils: a review. Geoderma 395:115076. https://doi.org/10.1016/j.geoderma.2021.115076

    Article  CAS  Google Scholar 

  5. Foldal CB, Leitgeb E, Michel K (2022) Characteristics and functions of urban soils. In: Rakshit A, Ghosh S, Vasenev V, Pathak H, Rajput VD (eds) Soils in urban ecosystem. Springer, Singapore. https://doi.org/10.1007/978-981-16-8914-7_3

    Chapter  Google Scholar 

  6. MEA (2005) Ecosystems and human well-being: current state and trends. Findings of the condition and trends. Working Group of the Millennium Ecosystem Assessment, vol 1. Island Press, Washington, Covelo, London

    Google Scholar 

  7. Dominati E, Patterson M, Mackay A (2010) A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol Econ 69:1858–1868. https://doi.org/10.1016/j.ecolecon.2010.05.002

    Article  Google Scholar 

  8. Morel JL, Burghardt W, Kim KH-J (2017) The challenges for soils in the urban environment. In: Levin MJ, Kim K-J, Morel JL et al (eds) Soil within cities. Global approaches to their sustainable management. Catena soil sciences, pp 1–6

    Google Scholar 

  9. Wall DH, Nielsen UN, Six J (2015) Soil biodiversity and human health. Nature 528:69–76. https://doi.org/10.1038/nature15744

    Article  CAS  PubMed  Google Scholar 

  10. Mollashahi H, Szymura M, Perera PCD, Szymura TH (2023) The effect of grassland type and proximity to the city center on urban soil and vegetation coverage. Environ Monit Assess 195:599. https://doi.org/10.1007/s10661-023-11210-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mao Q, Huang G, Buyantuev A et al (2014) Spatial heterogeneity of urban soils: the case of the Bei**g metropolitan region, China. Ecol Process 3:23. https://doi.org/10.1186/s13717-014-0023-8

    Article  Google Scholar 

  12. Herrmann DL, Shuster WD, Garmestani AS (2017) Vacant urban lot soils and their potential to support ecosystem services. Plant Soil 413(1–2):45–57. https://doi.org/10.1007/s11104-016-2874-5

    Article  CAS  Google Scholar 

  13. Mónok D, Kardos L, Pabar SA, Kotroczó Z, Tóth E, Végvári G (2021) Comparison of soil properties in urban and non-urban grasslands in Budapest area. Soil Use Manag 37(4):790–801. https://doi.org/10.1111/sum.12632

    Article  Google Scholar 

  14. Reddy KR, **e T, Dastgheibi S (2014) Nutrients removal from urban stormwater by different filter materials. Water Air Soil Pollut 225:1778. https://doi.org/10.1007/s11270-013-1778-8

    Article  CAS  Google Scholar 

  15. Kumar P (2021) Climate change and cities: challenges ahead. Front Sustain Cities 3:5. https://doi.org/10.3389/frsc.2021.645613

    Article  Google Scholar 

  16. Ayanlade A, Howard MT (2019) Land surface temperature and heat fluxes over three cities in Niger Delta. J African Earth Sci 151:54–66. https://doi.org/10.1016/j.jafrearsci.2018.11.027

    Article  Google Scholar 

  17. Kraemer R, Kabisch N (2022) Parks under stress: air temperature regulation of urban green spaces under conditions of drought and summer heat. Front Environ Sci 10:849965. https://doi.org/10.3389/fenvs.2022.849965

    Article  Google Scholar 

  18. Hartley W, Uffindell L, Plumb A, Rawlinson HA, Putwain P, Dickinson NM (2008) Assessing biological indicators for remediated anthropogenic urban soils. Sci Total Environ 405(1–3):358–369. https://doi.org/10.1016/j.scitotenv.2008.06.004

    Article  CAS  PubMed  Google Scholar 

  19. Piotrowska-Długosz A, Charzyński P (2015) The impact of the soil sealing degree on microbial biomass, enzymatic activity, and physicochemical properties in the Ekranic Technosols of Toruń (Poland). J Soils Sediments 15:47–59. https://doi.org/10.1007/s11368-014-0963-8

    Article  Google Scholar 

  20. Zhang M, Pu J (2011) Mineral materials as feasible amendments to stabilize heavy metals in polluted urban soils. J Environ Sci 23(4):607–615. https://doi.org/10.1016/S1001-0742(10)60455-X

    Article  CAS  Google Scholar 

  21. Maienza A, Ungaro F, Baronti S, Colzi I, Giagnoni L, Gonnelli C, Renella G, Ugolini F, Calzolari C (2021) Biological restoration of urban soils after De-sealing interventions. Agriculture 11(3):190. https://doi.org/10.3390/agriculture11030190

    Article  CAS  Google Scholar 

  22. Du J, Yu M, Cong Y, Lv H, Yuan Z (2022) Soil organic carbon storage in urban green space and its influencing factors: a case study of the 0–20 cm soil layer in Guangzhou City. Land 11:1484. https://doi.org/10.3390/land11091484

    Article  Google Scholar 

  23. Edmondson JL, Davies ZG, Mchugh N, Gaston KJ, Leake JR (2012) Organic carbon hidden in urban ecosystems. Sci Rep 2. https://doi.org/10.1038/srep00963

  24. Livesley SJ, Ossola A, Threlfall CG, Hahs AK, Williams NSG (2016) Soil carbon and carbon/nitrogen ratio change under tree canopy, tall grass, and turf grass areas of urban green space. J Environ Qual 45(1):215–223. https://doi.org/10.2134/jeq2015.03.0121

    Article  CAS  PubMed  Google Scholar 

  25. Canedoli C, Ferrè C, El Khair DA et al (2020) Soil organic carbon stock in different urban land uses: high stock evidence in urban parks. Urban Ecosyst 23:159–171. https://doi.org/10.1007/s11252-019-00901-6

    Article  Google Scholar 

  26. Wei XR, Shao MG, Gale WJ, Zhang XC, Li LH (2013) Dynamics of aggregate-associated organic carbon following conversion of forest to cropland. Soil Biol Biochem 57:876–883

    Article  CAS  Google Scholar 

  27. Calzolari C, Tarocco P, Lombardo N, Marchi N, Ungaro F (2020) Assessing soil ecosystem services in urban and peri-urban areas: from urban soils survey to providing support tool for urban planning. Land Use Policy 99:105037. https://doi.org/10.1016/j.landusepol.2020.105037

    Article  Google Scholar 

  28. Burghardt W, Morel JL, Zhang GL (2015) Development of the soil research about urban, industrial, traffic, mining, and military areas (SUITMA). Soil Sci Plant Nutr 61:3–21. https://doi.org/10.1080/00380768.2015.1046136

    Article  CAS  Google Scholar 

  29. Bidwell OW, Hole FD (1965) Man as a factor of soil formation. Soil Sci 99:65–72

    Article  Google Scholar 

  30. Howard JL (2021) Urban anthropogenic soils—a review.1st edn. Elsevier Inc.

    Google Scholar 

  31. Soil Survey Staff (2022) Keys to soil taxonomy.13th edn. USDA Natural Resources Conservation Service

    Google Scholar 

  32. Howard JL, Orlicki KM (2016) Composition, micromorphology, and distribution of microartefacts in anthropogenic soils, Detroit, Michigan USA. Catena 138:38–51. https://doi.org/10.1016/j.catena.2015.11.016

    Article  Google Scholar 

  33. Ciesielczuk J, Górka M, Fabiańska MJ et al (2021) The influence of heating on the carbon isotope composition, organic geochemistry and petrology of coal from the upper Silesian Coal Basin (Poland): An experimental and field study. Int J Coal Geol 241:1–18. https://doi.org/10.1016/j.coal.2021.103749

    Article  CAS  Google Scholar 

  34. Meuser H (2010) Contaminated urban soils. Environmental pollution 18. Springer, Dordrecht Heidelberg London New York

    Book  Google Scholar 

  35. Howard JL, Dubay BR, Daniels WL (2013) Artifact weathering, anthropogenic microparticles and lead contamination in urban soils at former demolition sites, Detroit, Michigan. Environ Pollut 179:1–12. https://doi.org/10.1016/j.envpol.2013.03.053

    Article  CAS  PubMed  Google Scholar 

  36. Burghardt W (2006) Soil sealing and soil properties related to sealing. Geol Soc Spec Pub 266:117–124. https://doi.org/10.1144/GSL.SP.2006.266.01.09

    Article  Google Scholar 

  37. Charzyński P, Bednarek R, Hudańska P, Świtoniak M (2018) Issues related to classification of garden soils from the urban area of Toruń, Poland. Soil Sci Plant Nutr 64:132–137. https://doi.org/10.1080/00380768.2018.1429833

    Article  Google Scholar 

  38. Scalenghe R, Ajmone-Marsan F (2009) The anthropogenic sealing of soils in urban areas. Landsc Urban Plan 90:1–10. https://doi.org/10.1016/j.landurbplan.2008.10.011

    Article  Google Scholar 

  39. Vassilev SV, Vassileva CG (1996) Mineralogy of combustion wastes from coal-fired power stations. Fuel Process Technol 47:261–280. https://doi.org/10.1016/0378-3820(96)01016-8

    Article  CAS  Google Scholar 

  40. Pędziwiatr A, Potysz A, Uzarowicz Ł (2021) Combustion wastes from thermal power stations and household stoves: a comparison of properties, mineralogical and chemical composition, and element mobilization by water and fertilizers. Waste Manag 131:136–146. https://doi.org/10.1016/j.wasman.2021.05.035

    Article  CAS  PubMed  Google Scholar 

  41. Charzyński P, Galbraith JM, Kabała C et al (2017) Classification of urban soils. In: Levin MJ, Kim KH-J, Morel JL et al (eds) Soil within cities. Global approaches to their sustainable management. Catena soil sciences, pp 93–106

    Google Scholar 

  42. Kabała C, Greinert A, Charzyński P, Uzarowicz Ł (2020) Technogenic soils - soils of the year 2020 in Poland. Concept, properties and classification of technogenic soils in Poland. Soil Sci Annu 71:267–280. https://doi.org/10.37501/soilsa/131609

    Article  CAS  Google Scholar 

  43. Uzarowicz Ł, Charzyński P, Greinert A et al (2020) Studies of technogenic soils in Poland: past, present, and future perspectives. Soil Sci Annu 71:281–299. https://doi.org/10.37501/soilsa/131615

    Article  CAS  Google Scholar 

  44. Lehmann A, Stahr K (2007) Nature and significance of anthropogenic urban soils. J Soils Sediments 7:247–260. https://doi.org/10.1065/jss2007.06.235

    Article  CAS  Google Scholar 

  45. Capra GF, Ganga A, Grilli E et al (2015) A review on anthropogenic soils from a worldwide perspective. J Soils Sediments 15:1602–1618. https://doi.org/10.1007/s11368-015-1110-x

    Article  CAS  Google Scholar 

  46. Galbraith JM (2018) Human-altered and human-transported (HAHT) soils in the U.S. soil classification system. Soil Sci Plant Nutr 64:190–199. https://doi.org/10.1080/00380768.2018.1442682

    Article  Google Scholar 

  47. Greinert A (2015) The heterogeneity of urban soils in the light of their properties. J Soils Sediments 15(8):1725–1737. https://doi.org/10.1007/s11368-014-1054-6

    Article  CAS  Google Scholar 

  48. Blume HP (1989) Classification of soils in urban agglomerations. Catena 16:269–275. https://doi.org/10.1016/0341-8162(89)90013-1

    Article  Google Scholar 

  49. Richter DB, Yaalon DH (2012) The changing model of soil revisited. Soil Sci Soc Am J 76:766–778. https://doi.org/10.2136/sssaj2011.0407

    Article  CAS  Google Scholar 

  50. Huot H, Séré G, Vidal-Beaudet L et al (2017) Pedogenic processes in soils of urban, industrial, traffic, mining and military areas. In: Levin MJ, Kim KH-J, Morel JL et al (eds) Soil within cities. Global approaches to their sustainable managemnet. Catena soil sciences, pp 71–77

    Google Scholar 

  51. Ferreira CSS, Seifollahi-Aghmiuni S, Destouni G, Ghajarnia N, Kalantari Z (2022) Soil degradation in the European Mediterranean region: processes, status and consequences. Sci Total Environ 805:150106. https://doi.org/10.1016/j.scitotenv.2021.150106

    Article  CAS  PubMed  Google Scholar 

  52. Yu B, Lu X, Fan X, Fan P, Zuo L, Yang Y, Wang L (2021) Analyzing environmental risk, source and spatial distribution of potentially toxic elements in dust of residential area in **’an urban area, China. Ecotoxicol Environ Saf 208:111679. https://doi.org/10.1016/j.ecoenv.2020.111679

    Article  CAS  PubMed  Google Scholar 

  53. Ettler V (2016) Soil contamination near non-ferrous metal smelters: a review. Appl Geochem 64:56–74. https://doi.org/10.1016/j.apgeochem.2015.09.020

    Article  CAS  Google Scholar 

  54. Fan S, Wang X (2017) Analysis and assessment of heavy metals pollution in soils around a pb and Zn smelter in Baoji City, Northwest China. Hum Ecol Risk Assess 23(5):1099–1120. https://doi.org/10.1080/10807039.2017.1300857

    Article  CAS  Google Scholar 

  55. Ahmad I, Khan B, Asad N, Mian IA, Jamil M (2019) Traffic-related lead pollution in roadside soils and plants in Khyber Pakhtunkhwa, Pakistan: implications for human health. Int J Environ Sci Technol 16:8015–8022. https://doi.org/10.1007/s13762-019-02216-7

    Article  CAS  Google Scholar 

  56. Bibi D, Tőzsér D, Sipos B, Tóthmérész B, Simon E (2023) Heavy metal pollution of soil in Vienna, Austria. Water Air Soil Pollut 234:232. https://doi.org/10.1007/s11270-023-06244-5

    Article  CAS  Google Scholar 

  57. Aguilera A, Cortés JL, Delgado C, Aguilar Y, Aguilar D, Cejudo R, Quintana P, Goguitchaichvili A, Bautista F (2022) Heavy metal contamination (cu, pb, Zn, Fe, and Mn) in urban dust and its possible ecological and human health risk in Mexican cities. Front Environ Sci 10:854460. https://doi.org/10.3389/fenvs.2022.854460

    Article  Google Scholar 

  58. Osipova NA, Zhornyak LV, Yazikov EG, Syskina AA (2014) Ecological dangers of chemical contamination of urban areas soils: case study of Tomsk. Procedia Chem 10:508–512. https://doi.org/10.1016/j.proche.2014.10.086

    Article  CAS  Google Scholar 

  59. Guney M, Zagury GJ, Dogan N, Onay TT (2010) Exposure assessment and risk characterization from trace elements following soil ingestion by children exposed to playgrounds, parks and picnic areas. J Hazard Mater 182:656–664. https://doi.org/10.1016/j.jhazmat.2010.06.082

    Article  CAS  PubMed  Google Scholar 

  60. Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E (2020) Environmental and health impacts of air pollution: a review. Front Public Health 8:14. https://doi.org/10.3389/fpubh.2020.00014

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gan T, Yang H, Jiang W (2021) How do urban haze pollution and economic development affect each other? Empirical evidence from 287 Chinese cities during 2000–2016. Sustain Cities Soc 65. https://doi.org/10.1016/j.scs.2020.102642

  62. Hu W, Huang B, He Y, Kalkhajeh YK (2016) Assessment of potential health risk of heavy metals in soils from a rapidly develo** region of China. Hum Ecol Risk Assess Int J 22(1):211–225. https://doi.org/10.1080/10807039.2015.1057102

    Article  CAS  Google Scholar 

  63. Crutzen J (2004) New directions: the growing urban heat and pollution ‘“Island”’ effect—impact on chemistry and climate. Atmos Environ 38:3539–3540. https://doi.org/10.1029/2001

    Article  CAS  Google Scholar 

  64. Chen C, Wang Y, Qian Y, Zhao X, Wang Q (2015) The synergistic toxicity of the multiple chemical mixtures: implications for risk assessment in the terrestrial environment. Environ Int 77:95–105. https://doi.org/10.1016/j.envint.2015.01.014

    Article  CAS  PubMed  Google Scholar 

  65. Senft F (1847) Lehrbuch der Gebirgs- und Bodenkunde. Mauke, Jena, Germany

    Google Scholar 

  66. FAO and UNEP (2021) Global assessment of soil pollution: Report. Rome. https://doi.org/10.4060/cb4894en

  67. Yilmaz D, Cannavo P, Séré G, Vidal-Beaudet L, Legret M, Damas O, Peyneau PE (2018) Physical properties of structural soils containing waste materials to achieve urban greening. J Soils Sediments 18:442–455. https://doi.org/10.1007/s11368-016-1524-0

    Article  CAS  Google Scholar 

  68. Gottesfeld P, Were FH, Adogame L, Gharbi S, San D, Nota MM, Kuepouo G (2018) Soil contamination from lead battery manufacturing and recycling in seven African countries. Environ Res 161:609–614. https://doi.org/10.1016/j.envres.2017.11.055

    Article  CAS  PubMed  Google Scholar 

  69. Li WC, Tse HF, Fok L (2016) Plastic waste in the marine environment: a review of sources, occurrence and effects. Sci Total Environ 566–567:333–349. https://doi.org/10.1016/j.scitotenv.2016.05.084

    Article  CAS  PubMed  Google Scholar 

  70. Huerta-Lwanga E, Vega JM, Quej VK, de los Angeles Chi J, del Cid LS, Chi C, Segura GE, Gertsen H, Salánki T, van der Ploeg M (2017) Field evidence for transfer of plastic debris along a terrestrial food chain. Sci Rep 7(1):14071. https://doi.org/10.1038/s41598-017-14588-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. McCormick A, Hoellein TJ, Mason SA, Schluep J, Kelly JJ (2014) Microplastic is an abundant and distinct microbial habitat in an urban river. Environ Sci Technol 48(20):11863–11871. https://doi.org/10.1021/es503610r

    Article  CAS  PubMed  Google Scholar 

  72. Bläsing M, Amelung W (2018) Plastics in soil: analytical methods and possible sources. Sci Total Environ 612:422–435. https://doi.org/10.1016/j.scitotenv.2017.08.086

    Article  CAS  PubMed  Google Scholar 

  73. Ding L, Zhang S, Wang X, Yang X, Zhang C, Qi Y, Guo X (2020) The occurrence and distribution characteristics of microplastics in the agricultural soils of Shaanxi Province, in North-Western China. Sci Total Environ:137525. https://doi.org/10.1016/j.scitotenv.2020.137525

  74. Zhou Y, Liu X, Wang J (2019) Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of Central China. Sci Total Environ 694:133798. https://doi.org/10.1016/j.scitotenv.2019.133798

    Article  CAS  PubMed  Google Scholar 

  75. Chen Y, Leng Y, Liu X, Wang J (2020) Microplastic pollution in vegetable farmlands of suburb Wuhan, Central China. Environ Pollut 257:113449. https://doi.org/10.1016/j.envpol.2019.113449

    Article  CAS  PubMed  Google Scholar 

  76. Büks F, Kaupenjohann M (2020) Global concentrations of microplastic in soils, a review. Soil 6:649–662. https://doi.org/10.5194/soil-6-649-2020

    Article  Google Scholar 

  77. Leitão IA, van Schaik L, Ferreira AJD, Alexandre N, Geissen V (2023) The spatial distribution of microplastics in topsoils of an urban environment - Coimbra city case-study. Environ Res 218:114961. https://doi.org/10.1016/j.envres.2022.114961

    Article  CAS  PubMed  Google Scholar 

  78. Bailon MX, David A, Park Y, Kim E, Hong Y (2018) Total mercury, methyl mercury, and heavy metal concentrations in Hyeongsan River and its tributaries in Pohang city, South Korea. Environ Monit Assess 190. https://doi.org/10.1007/s10661-018-6624-4

  79. Yan Q, Kong S, Yan Y, Liu X, Zheng S, Qin S, Wu F, Niu Z, Zheng H, Cheng Y, Zeng X, Wu J, Yao L, Liu D, Shen G, Shen Z, Qi S (2022) Emission and spatialized health risks for trace elements from domestic coal burning in China. Environ Int 158:107001. https://doi.org/10.1016/j.envint.2021.107001

    Article  CAS  PubMed  Google Scholar 

  80. Cheng H, Li M, Zhao C, Li K, Peng M, Qin A, Cheng X (2014) Overview of trace metals in the urban soil of 31 metropolises in China. J Geochem Explor 139:31–52. https://doi.org/10.1016/j.gexplo.2013.08.012

    Article  CAS  Google Scholar 

  81. Sellami S, Zeghouan O, Dhahri F, Mechi L, Moussaoui Y, Kebabi B (2022) Assessment of heavy metal pollution in urban and peri-urban soil of Setif city (High Plains, eastern Algeria). Environ Monit Assess 194:126. https://doi.org/10.1007/s10661-022-09781-4

    Article  CAS  PubMed  Google Scholar 

  82. Huang C, Zhang L, Meng J, Yu Y, Qi J, Shen P, Li X, Ding P, Chen M, Hu G (2022a) Characteristics, source apportionment and health risk assessment of heavy metals in urban road dust of the Pearl River Delta, South China. Ecotoxicol Environ Saf 236:113490. https://doi.org/10.1016/j.ecoenv.2022.113490

    Article  CAS  PubMed  Google Scholar 

  83. Schoukens I, Cavezza F, Cerezo J, Vandenberghe V, Gudla VC, Ambat R (2017) Influence of de-icing salt chemistry on the corrosion behavior of AA6016. Mater Corros 69(7):881–887. https://doi.org/10.1002/maco.201709907

    Article  CAS  Google Scholar 

  84. Stets EG, Lee CJ, Lytle DA, Schock MR (2018) Increasing chloride in rivers of the conterminous U.S. and linkages to potential corrosivity and lead action level exceedances in drinking water. Sci Total Environ 613–614:1498–1509. https://doi.org/10.1016/j.scitotenv.2017.07.119

    Article  CAS  PubMed  Google Scholar 

  85. Schuler MS, Relyea RA (2018) A review of the combined threats of road salts and heavy metals to freshwater systems. Bioscience 68:327–335. https://doi.org/10.1093/biosci/biy018

    Article  Google Scholar 

  86. Haq S, Kaushal SS, Duan S (2018) Episodic salinization and freshwater salinization syndrome mobilize base cations, carbon, and nutrients to streams across urban regions. Biogeochemistry 141:463–486. https://doi.org/10.1007/s10533-018-0514-2

    Article  CAS  Google Scholar 

  87. Equiza MA, Calvo-Polanco M, Cirelli D, Señorans J, Wartenbe M, Saunders C, Zwiazek JJ (2017) Long-term impact of road salt (NaCl) on soil and urban trees in Edmonton, Canada. Urban For Urban Green 21:16–28. https://doi.org/10.1016/j.ufug.2016.11.003

    Article  Google Scholar 

  88. Adam G, Gamoh K, Morris DG, Duncan H (2002) Effect of alcohol addition on the movement of petroleum hydrocarbon fuels in soil. Sci Total Environ 286:15–25. https://doi.org/10.1016/S0048-9697(01)00956-1

    Article  CAS  PubMed  Google Scholar 

  89. Sari GL, Trihadiningrum Y, Ni'matuzahroh N (2018) Petroleum hydrocarbon pollution in soil and surface water by public oil fields in Wonocolo sub-district, Indonesia. J Ecol Eng 19(2):184–193. https://doi.org/10.12911/22998993/82800

    Article  Google Scholar 

  90. Haider FU, Ejaz M, Cheema SA, Khan MI, Zhao B, Liqun C, Salim MA, Naveed M, Khan N, Núñez-Delgado A, Mustafa A (2021) Phytotoxicity of petroleum hydrocarbons: sources, impacts and remediation strategies. Environ Res 197:111031. https://doi.org/10.1016/j.envres.2021.111031

    Article  CAS  PubMed  Google Scholar 

  91. Guo W, Wang W, Liu S, Kong X, Wang P, Xu T (2022) Long-term petroleum hydrocarbons pollution after a coastal oil spill. J Mar Sci Eng 10(10):1380. https://doi.org/10.3390/jmse10101380

    Article  Google Scholar 

  92. Peng C, Chen W, Liao X, Wang M, Ouyang Z, Jiao W, Bai Y (2011) Polycyclic aromatic hydrocarbons in urban soils of Bei**g: status, sources, distribution and potential risk. Environ Pollut 159(3):802–808. https://doi.org/10.1016/j.envpol.2010.11.003

    Article  CAS  PubMed  Google Scholar 

  93. Chen M, Huang P, Chen L (2013) Polycyclic aromatic hydrocarbons in soils from Urumqi, China: distribution, source contributions, and potential health risks. Environ Monit Assess 185:5639–5651. https://doi.org/10.1007/s10661-012-2973-6

    Article  CAS  PubMed  Google Scholar 

  94. Hiller E, Lachká L, Jurkovič Ľ, Vozaŕ J (2015) Polycyclic aromatic hydrocarbons in urban soils from kindergartens and playgrounds in Bratislava, the capital city of Slovakia. Environ Earth Sci 73:7147–7156. https://doi.org/10.1007/s12665-014-3894-1

    Article  CAS  Google Scholar 

  95. Liao J, Dai Y, An L, Hang J, Shi Y, Zeng L (2023) Water-energy-vegetation nexus explain global geographical variation in surface urban heat Island intensity. Sci Total Environ 895:165158. https://doi.org/10.1016/j.scitotenv.2023.165158

    Article  CAS  PubMed  Google Scholar 

  96. Miles V, Esau I (2020) Surface urban heat islands in 57 cities across different climates in northern Fennoscandia. Urban Clim 31:100575. https://doi.org/10.1016/j.uclim.2019.100575

    Article  Google Scholar 

  97. Yoon TK (2022) Urban soil carbon: processes and patterns. In: Rakshit A et al (eds) Soils in urban ecosystem. Springer. https://doi.org/10.1007/978-981-16-8914-7_5

    Chapter  Google Scholar 

  98. Karimi A, Mohammad P, García-Martínez A, Moreno-Rangel D, Gachkar D, Gachkar S (2022) New developments and future challenges in reducing and controlling heat Island effect in urban areas. Environ Dev Sustain:1–47. https://doi.org/10.1007/S10668-022-02530-0

  99. Pappalardo SE, Zanetti C, Todeschi V (2023) Map** urban heat islands and heat-related risk during heat waves from a climate justice perspective: a case study in the municipality of Padua (Italy) for inclusive adaptation policies. Landsc Urban Plan 238:104831. https://doi.org/10.1016/j.landurbplan.2023.104831

    Article  Google Scholar 

  100. Gu D, Andreev K, Dupre ME (2021) Major trends in population growth around the world. China CDC Wkly 3:604. https://doi.org/10.46234/CCDCW2021.160

    Article  PubMed  PubMed Central  Google Scholar 

  101. Li D, Liao W, Rigden AJ, Liu X, Wang D, Malyshev S, Shevliakova E (2019) Urban heat Island: aerodynamics or imperviousness. Sci Adv 5:4299. https://doi.org/10.1126/sciadv.aau4299

    Article  Google Scholar 

  102. Vasenev V, Varentsova M, Konstantinov P, Romzaykina O, Kanareykina I, Dvornikov Y, Manukyana V (2021) Projecting urban heat Island effect on the spatial-temporal variation of microbial respiration in urban soils of Moscow megalopolis. Sci Total Environ 786:147457

    Article  CAS  Google Scholar 

  103. Zhang M, Al Kafy A, **ao P, Han S, Zou S, Saha M, Zhang C, Tan S (2023) Impact of urban expansion on land surface temperature and carbon emissions using machine learning algorithms in Wuhan, China. Urban Clim 47:101347. https://doi.org/10.1016/J.UCLIM.2022.101347

    Article  Google Scholar 

  104. Lu C, Kotze D, Setälä HM (2020) Soil sealing causes substantial losses in C and N storage in urban soils under cool climate. Sci Total Environ 725:138369. https://doi.org/10.1016/j.scitotenv.2020.138369

    Article  CAS  PubMed  Google Scholar 

  105. Cambou A, Shaw RK, Huot H, Vidal-Beaudet L, Hunault G, Cannavo P et al (2018) Estimation of soil organic carbon stocks of two cities, new York City and Paris. Sci Total Environ 644:452–464. https://doi.org/10.1016/j.scitotenv.2018.06.322

    Article  CAS  PubMed  Google Scholar 

  106. Wessolek G (2008) Sealed soils. In: Marzluff JM (ed) Urban ecology. Springer, pp 161–177. https://doi.org/10.1007/978-0-387-73412-5_10

    Chapter  Google Scholar 

  107. Richter S, Haase D, Thestorf K, Makki M (2020) Carbon pools of Berlin, Germany: organic carbon in soils and aboveground in trees. Urban For Urban Green 54:126777. https://doi.org/10.1016/j.ufug.2020.126777

    Article  Google Scholar 

  108. Majidzadeh H, Lockaby BG, Price R, Governo R (2018) Soil carbon and nitrogen dynamics beneath impervious surfaces. Soil Sci Soc Am J 82. https://doi.org/10.2136/sssaj2017.11.0381

  109. Song C (2022) Application of nature-based measures in China’s sponge city initiative: current trends and perspectives. Nature-Based Solutions 2:100010. https://doi.org/10.1016/j.nbsj.2022.100010

    Article  Google Scholar 

  110. Nguyen TT, Ngo HH, Guo W, Wang XC, Ren N, Li G, Ding G, Liang H (2019) Implementation of a specific urban water management - Sponge City. Sci Total Environ 652:147–162. https://doi.org/10.1016/j.scitotenv.2018.10.168

    Article  CAS  PubMed  Google Scholar 

  111. Jiang C, Li J, Hu Y, Yao Y, Li H (2022) Construction of water-soil-plant system for rainfall vertical connection in the concept of sponge city: a review. J Hydrol 605:127327. https://doi.org/10.1016/j.jhydrol.2021.127327

    Article  CAS  Google Scholar 

  112. Guan X, Wang J, **ao F (2021) Sponge city strategy and application of pavement materials in sponge city. J Clean Prod 303:127022. https://doi.org/10.1016/j.jclepro.2021.127022

    Article  Google Scholar 

  113. Sefati Z, Khalilimoghadam B, Nadian H (2019) Assessing urban soil quality by improving the method for soil environmental quality evaluation in a saline groundwater area of Iran. Catena 173:471–480. https://doi.org/10.1016/j.catena.2018.10.040

    Article  CAS  Google Scholar 

  114. Lan T, Guo S-W, Han J-W, Yang Y-L, Zhang K, Zhang Q, Yang W, Li P-F (2019) Evaluation of physical properties of typical urban green space soils in Binhai area, Tian**, China. Urban For Urban Green 44. https://doi.org/10.1016/j.ufug.2019.126430

  115. Wang T, **ao F, Zhu X, Huang B, Wang J, Amirkhanian S (2018) Energy consumption and environmental impact of rubberized asphalt pavement. J Clean Prod 180:139–158. https://doi.org/10.1016/j.jclepro.2018.01.086

    Article  CAS  Google Scholar 

  116. Yang P, Zhao ZX, Li ZC, Wang YH (2021) Experimental study on long-term performance of new urban green space soil for sponge city construction. Urban For Urban Green 58:126906. https://doi.org/10.1016/j.ufug.2020.126906

    Article  Google Scholar 

  117. Hu M, Zhang X, Siu Y, Li Y, Tanaka K, Yang H, Xu Y (2018) Flood mitigation by permeable pavements in Chinese Sponge City construction. Water 10(2). https://doi.org/10.3390/w10020172

  118. Zhang K, Chui TFM (2019) Linking hydrological and bioecological benefits of green infrastructures across spatial scales – a literature review. Sci Total Environ 646:1219–1231. https://doi.org/10.1016/j.scitotenv.2018.07.355

    Article  CAS  PubMed  Google Scholar 

  119. Besir AB, Cuce E (2018) Green roofs and facades: a comprehensive review. Renew Sust Energ Rev 82:915–939. https://doi.org/10.1016/j.rser.2017.09.106

    Article  Google Scholar 

  120. Mei C, Liu J, Wang H, Yang Z, Ding X, Shao W (2018) Integrated assessments of green infrastructure for flood mitigation to support robust decision-making for sponge city construction in an urbanized watershed. Sci Total Environ 639:1394–1407. https://doi.org/10.1016/j.scitotenv.2018.05.199

    Article  CAS  PubMed  Google Scholar 

  121. Wang M, Zhang D, Cheng Y, Keat Tan S (2019) Assessing performance of porous pavements and bioretention cells for stormwater management in response to probable climatic changes. J Environ Manag 243:157–167. https://doi.org/10.1016/j.jenvman.2019.05.012

    Article  Google Scholar 

  122. Cai Y, Zhao Y, Wei T, Fu W, Tang C, Yuan Y, Yin Q, Wang C (2023) Utilization of constructed wetland technology in China's sponge city scheme under carbon neutral vision. J Water Process Eng 53:103828. https://doi.org/10.1016/j.jwpe.2023.103828

    Article  Google Scholar 

  123. Wang J, Manning DAC, Stirling R, Lopez-Capel E, Werner D (2023a) Biochar benefits carbon off-setting in blue-green infrastructure soils – a lysimeter study. J Environ Manag 325:116639. https://doi.org/10.1016/j.jenvman.2022.116639

    Article  CAS  Google Scholar 

  124. Wang J, Zhen J, Hu W, Chen S, Lizaga I, Zeraatpisheh M, Yang X (2023b) Remote sensing of soil degradation: Progress and perspective. Int Soil Water Conserv Res 11:429–454. https://doi.org/10.1016/j.iswcr.2023.03.002

    Article  Google Scholar 

  125. Shi T, He L, Wang R, Li Z, Hu Z, Wu G (2023) Digital map** of heavy metals in urban soils: a review and research challenges. Catena 228:107183. https://doi.org/10.1016/j.catena.2023.107183

    Article  CAS  Google Scholar 

  126. Fiolleau S, Uhlemann S, Falco N, Dafflon B (2023) Assessing probability of failure of urban landslides through rapid characterization of soil properties and vegetation distribution. Geomorphology 423:108560. https://doi.org/10.1016/j.geomorph.2022.108560

    Article  Google Scholar 

  127. Sut-Lohmann M, Knoop C, Raab T (2019) Feasibility of using biowaste-based digestates to improve soil fertility and reduce iron-cyanide (Fe-CN) complexes mobility. Land Degrad Dev 30(13):1545–1553. https://doi.org/10.1002/ldr.3336

    Article  Google Scholar 

  128. Yu K, Van Geel M, Ceulemans T, Geerts W, Ramos MM, Serafim C, Sousa N, Castro PLM, Kastendeuch P, Najjar G, Ameglio T, Ngao J, Saudreau M, Honnay O, Somers B (2018) Vegetation reflectance spectroscopy for biomonitoring of heavy metal pollution in urban soils. Environ Pollut 243:1912–1922. https://doi.org/10.1016/j.envpol.2018.09.053

    Article  CAS  PubMed  Google Scholar 

  129. Stumpe B, Bechtel B, Heil J, Jörges C, Jostmeier A, Kalks F, Schwarz K, Marschner B (2023) Soil texture mediates the surface cooling effect of urban and peri-urban green spaces during a drought period in the city area of Hamburg (Germany). Sci Total Environ 897:165228. https://doi.org/10.1016/j.scitotenv.2023.165228

    Article  CAS  PubMed  Google Scholar 

  130. Ivashchenko K, Ananyeva N, Vasenev VI, Sushko S, Seleznyova A, Kudeyarov V (2019) Microbial C-availability and organic matter decomposition in urban soils of megapolis depend on functional zoning. Soil Environ 38:31–41. https://doi.org/10.25252/SE/19/61524

    Article  CAS  Google Scholar 

  131. Dvornikov YA, Vasenev VI, Romzaykina ON, Grigorieva VE, Litvinov YA, Gorbov SN, Dolgikh AV, Korneykova MV, Gossen DD (2021) Projecting the urbanization effect on soil organic carbon stocks in polar and steppe areas of European Russia by remote sensing. Geoderma 399:115039. https://doi.org/10.1016/j.geoderma.2021.115039

    Article  CAS  Google Scholar 

  132. Florido M, Madrid F, Madrid L (2011) Effect of an organic amendment on availability and bio-accessibility of some metals in soils of urban recreational areas. Environ Pollut 159(2):383–390. https://doi.org/10.1016/j.envpol.2010.11.002

    Article  CAS  PubMed  Google Scholar 

  133. Somerville PD, May PB, Livesley SJ (2018) Effects of deep tillage and municipal green waste compost amendments on soil properties and tree growth in compacted urban soils. J Environ Manag 227(1):365–374. https://doi.org/10.1016/j.jenvman.2018.09.004

    Article  Google Scholar 

  134. De Lucia B, Cristiano G, Vecchietti L, Bruno L (2013) Effect of different rates of composted organic amendment on urban soil properties, growth and nutrient status of three Mediterranean native hedge species. Urban For Urban Green 12(4):537–545

    Article  Google Scholar 

  135. Droz AG, Coffman RR, Fulton TG, Blackwood CB (2021) Moving beyond habitat analogs: optimizing green roofs for a balance of ecosystem services. Ecol Eng 173:106422. https://doi.org/10.1016/j.ecoleng.2021.106422

    Article  Google Scholar 

  136. Molineux CJ, Gange AC, Connop SP, Newport DJ (2015) Are microbial communities in green roof substrates comparable to those in post-industrial sites?—a preliminary study. Urban Ecosyst 18(4):1245–1260. https://doi.org/10.1007/s11252-015-0450-z

    Article  Google Scholar 

  137. Murtagh N, Frost R (2023) Motivations for urban front gardening: a quantitative analysis. Landsc Urban Plan 238:104835. https://doi.org/10.1016/j.landurbplan.2023.104835

    Article  Google Scholar 

  138. Caneva G, Cicinelli E, Scolastri A, Bartoli F (2020) Guidelines for urban community gardening: proposal of preliminary indicators for several ecosystem services (Rome, Italy). Urban For Urban Green 56:126866. https://doi.org/10.1016/j.ufug.2020.12

    Article  Google Scholar 

  139. Scheromm P, Javelle A (2022) Gardening in an urban farm: a way to reconnect citizens with the soil. Urban For Urban Green 72:127590. https://doi.org/10.1016/j.ufug.2022.127590

    Article  Google Scholar 

  140. Salomon MJ, Watts-Williams SJ, McLaughlin MJ, Cavagnaro TR (2022) Spatiotemporal dynamics of soil health in urban agriculture. Sci Total Environ 805:150224. https://doi.org/10.1016/j.scitotenv.2021.150224

    Article  CAS  PubMed  Google Scholar 

  141. Malone Z, Berh AA, Ryals R (2023) Impacts of organic matter amendments on urban soil carbon and soil quality: a meta-analysis. J Clean Prod 419:138148. https://doi.org/10.1016/j.jclepro.2023.138148

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sut-Lohmann, M., Pędziwiatr, A., Jonczak, J., Kruczkowska, B. (2024). Remediation of Soils Polluted by Urban Settings. In: Ortega-Calvo, J.J., Coulon, F. (eds) Soil Remediation Science and Technology. The Handbook of Environmental Chemistry, vol 130. Springer, Cham. https://doi.org/10.1007/698_2023_1068

Download citation

Publish with us

Policies and ethics

Navigation