An Innovative Technology to Minimize Biological Sludge Production and Improve Its Quality in a Circular Economy Perspective

  • Chapter
  • First Online:
Emerging Pollutants in Sewage Sludge and Soils

Abstract

In the coming years, the production of biological sewage sludge is set to increase. According to the European legislation, the management of sludge, as well as other waste, must follow a hierarchical approach according to which the first place in order of priority is represented by the prevention/minimization of the production. Over the last few years, thermophilic aerobic processes proved to be effective in minimizing the production of sludge within wastewater treatment plants (WWTPs). Thermophilic aerobic/anoxic membrane reactor (TAMR) technology combines the advantages of thermophilic aerobic treatments with those of biological membrane processes. This work reviews the literature concerning the application of TAMR focusing on the prevention of the production of biological sludge and on the improvement of its quality for the purpose of a possible recovery in agriculture in a circular economy perspective. The results show that the process is mature and effective for full-scale application in conventional WWTPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. European Commission (1998) EUR-Lex commission directive 98/15/EC of 27 February 1998 amending council directive 91/271/EEC with respect to certain requirements established in annex I thereof. Off J Eur Communities 67:29–30

    Google Scholar 

  2. European Commission (1991) EUR-Lex council directive 91/271/EEC of 21 May 1991 concerning urban wastewater treatment. Off J Eur Communities 135:40–52

    Google Scholar 

  3. Mininni G, Blanch AR, Lucena F, Berselli S (2015) EU policy on sewage sludge utilization and perspectives on new approaches of sludge management. Environ Sci Pollut Res 22:7361–7374. https://doi.org/10.1007/s11356-014-3132-0

    Article  CAS  Google Scholar 

  4. Collivignarelli MC, Abbà A, Carnevale Miino M, Torretta V (2019) What advanced treatments can be used to minimize the production of sewage sludge in WWTPs? Appl Sci 9:2650. https://doi.org/10.3390/app9132650

    Article  CAS  Google Scholar 

  5. European Commission (2018) EUR-Lex directive EU/2018/851 of the European Parliament and of the council of 30 May 2018 amending directive 2008/98/EC on waste. Off J Eur Communities 150:109–140

    Google Scholar 

  6. Bertanza G, Canato M, Laera G, Tomei MC (2015) Methodology for technical and economic assessment of advanced routes for sludge processing and disposal. Environ Sci Pollut Res 22:7190–7202. https://doi.org/10.1007/s11356-014-3088-0

    Article  Google Scholar 

  7. Bertanza G, Papa M, Canato M et al (2014) How can sludge dewatering devices be assessed? Development of a new DSS and its application to real case studies. J Environ Manag 137:86–92. https://doi.org/10.1016/j.jenvman.2014.02.002

    Article  Google Scholar 

  8. Collivignarelli MC, Castagnola F, Sordi M, Bertanza G (2015) Treatment of sewage sludge in a thermophilic membrane reactor (TMR) with alternate aeration cycles. J Environ Manag 162:132–138. https://doi.org/10.1016/j.jenvman.2015.07.031

    Article  CAS  Google Scholar 

  9. Zhao G, Garrido-Baserba M, Reifsnyder S et al (2019) Comparative energy and carbon footprint analysis of biosolids management strategies in water resource recovery facilities. Sci Total Environ 665:762–773. https://doi.org/10.1016/j.scitotenv.2019.02.024

    Article  CAS  Google Scholar 

  10. Ispra (2019) Special waste report, 2019 edition

    Google Scholar 

  11. Mininni G, Mauro E, Piccioli B et al (2019) Production and characteristics of sewage sludge in Italy. Water Sci Technol 79:619–626. https://doi.org/10.2166/wst.2019.064

    Article  CAS  Google Scholar 

  12. European Commission (1986) EUR_Lex council directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Off J Eur Communities 181:6–12

    Google Scholar 

  13. Liu M, Wang C, Bai Y, Xu G (2018) Effects of sintering temperature on the characteristics of lightweight aggregate made from sewage sludge and river sediment. J Alloys Compd 748:522–527. https://doi.org/10.1016/j.jallcom.2018.03.216

    Article  CAS  Google Scholar 

  14. Zhang L, Xu C, Champagne P, Mabee W (2014) Overview of current biological and thermo-chemical treatment technologies for sustainable sludge management. Waste Manag Res 32:586–600. https://doi.org/10.1177/0734242X14538303

    Article  CAS  Google Scholar 

  15. Ashekuzzaman SM, Forrestal P, Richards K, Fenton O (2019) Dairy industry derived wastewater treatment sludge: generation, type and characterization of nutrients and metals for agricultural reuse. J Clean Prod 230:1266–1275. https://doi.org/10.1016/j.jclepro.2019.05.025

    Article  CAS  Google Scholar 

  16. Kacprzak M, Neczaj E, Fijałkowski K et al (2017) Sewage sludge disposal strategies for sustainable development. Environ Res 156:39–46. https://doi.org/10.1016/j.envres.2017.03.010

    Article  CAS  Google Scholar 

  17. European Commission (2020) EU circular economy action plan

    Google Scholar 

  18. Collivignarelli MC, Abbà A, Frattarola A et al (2019) Legislation for the reuse of biosolids on agricultural land in Europe: overview. Sustainability 11:6015. https://doi.org/10.3390/su11216015

    Article  CAS  Google Scholar 

  19. Cornejo PK, Becker J, Pagilla K et al (2019) Sustainability metrics for assessing water resource recovery facilities of the future. Water Environ Res 91:45–53. https://doi.org/10.2175/106143017X15131012187980

    Article  CAS  Google Scholar 

  20. Collivignarelli MC, Abbà A, Bertanza G, Barbieri G (2017) Treatment of high strength aqueous wastes in a thermophilic aerobic membrane reactor (TAMR): performance and resilience. Water Sci Technol 76:3236–3245. https://doi.org/10.2166/wst.2017.492

    Article  CAS  Google Scholar 

  21. Kurian R, Acharya C, Nakhla G, Bassi A (2005) Conventional and thermophilic aerobic treatability of high strength oily pet food wastewater using membrane-coupled bioreactors. Water Res 39:4299–4308. https://doi.org/10.1016/j.watres.2005.08.030

    Article  CAS  Google Scholar 

  22. LaPara TM, Alleman JE (1999) Thermophilic aerobic biological wastewater treatment. Water Res 33:895–908. https://doi.org/10.1016/S0043-1354(98)00282-6

    Article  CAS  Google Scholar 

  23. Lloret E, Pastor L, Pradas P, Pascual JA (2013) Semi full-scale thermophilic anaerobic digestion (TAnD) for advanced treatment of sewage sludge: stabilization process and pathogen reduction. Chem Eng J 232:42–50. https://doi.org/10.1016/j.cej.2013.07.062

    Article  CAS  Google Scholar 

  24. Ziemba C, Peccia J (2011) Net energy production associated with pathogen inactivation during mesophilic and thermophilic anaerobic digestion of sewage sludge. Water Res 45:4758–4768. https://doi.org/10.1016/j.watres.2011.06.014

    Article  CAS  Google Scholar 

  25. Collivignarelli MC, Abbà A, Frattarola A et al (2019) Treatment of aqueous wastes by means of thermophilic aerobic membrane reactor (TAMR) and nanofiltration (NF): process auditing of a full-scale plant. Environ Monit Assess 191:708. https://doi.org/10.1007/s10661-019-7827-z

    Article  CAS  Google Scholar 

  26. Collivignarelli MC, Bertanza G, Sordi M, Pedrazzani R (2015) High-strength wastewater treatment in a pure oxygen thermophilic process: 11-year operation and monitoring of different plant configurations. Water Sci Technol 71:588–596. https://doi.org/10.2166/wst.2015.008

    Article  CAS  Google Scholar 

  27. Collivignarelli MC, Carnevale Miino M, Caccamo FM et al (2021) Performance of full-scale thermophilic membrane bioreactor and assessment of the effect of the aqueous residue on mesophilic biological activity. Water 13:1754. https://doi.org/10.3390/w13131754

    Article  CAS  Google Scholar 

  28. Collivignarelli MC, Abbà A, Bertanza G et al (2018) Integrating novel (thermophilic aerobic membrane reactor-TAMR) and conventional (conventional activated sludge-CAS) biological processes for the treatment of high strength aqueous wastes. Bioresour Technol 255:213–219. https://doi.org/10.1016/j.biortech.2018.01.112

    Article  CAS  Google Scholar 

  29. Collivignarelli MC, Abbà A, Bertanza G (2014) Treatment of high strength pharmaceutical wastewaters in a thermophilic aerobic membrane reactor (TAMR). Water Res 63:190–198. https://doi.org/10.1016/j.watres.2014.06.018

    Article  CAS  Google Scholar 

  30. Collivignarelli MC, Abbà A, Bertanza G, Frattarola A (2019) Drastic reduction of sludge in wastewater treatment plants: co-digestion of sewage sludge and aqueous waste in a thermophilic membrane reactor. Environ Technol 1–10. https://doi.org/10.1080/09593330.2019.1575478

  31. Lee W, Kang S, Shin H (2003) Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors. J Memb Sci 216:217–227. https://doi.org/10.1016/S0376-7388(03)00073-5

    Article  CAS  Google Scholar 

  32. Chang FY, Lin CY (2004) Biohydrogen production using an up-flow anaerobic sludge blanket reactor. Int J Hydrog Energy 29:33–39. https://doi.org/10.1016/S0360-3199(03)00082-X

    Article  CAS  Google Scholar 

  33. Lombardy Region (2019) Regional decree n. 6665 of 14 May 2019 (in Italian). https://www.regione.lombardia.it/wps/wcm/connect/19df87f4-0ac9-4fac-b171-084e37a5bc51/D.d.u.o.+6665_2019.pdf?MOD=AJPERES&CACHEID=ROOTWORKSPACE-19df87f4-0ac9-4fac-b171-084e37a5bc51-mH4MG8K. Accessed 9 Sep 2019

  34. Collivignarelli MC, Abbà A, Bertanza G et al (2021) Treatment of high strength wastewater by thermophilic aerobic membrane reactor and possible valorisation of nutrients and organic carbon in its residues. J Clean Prod 280. https://doi.org/10.1016/j.jclepro.2020.124404

  35. Liu S, Zhu N, Li LY (2011) The one-stage autothermal thermophilic aerobic digestion for sewage sludge treatment. Chem Eng J 174:564–570. https://doi.org/10.1016/j.cej.2011.09.043

    Article  CAS  Google Scholar 

  36. Collivignarelli MC, Abbà A, Bertanza G (2015) Why use a thermophilic aerobic membrane reactor for the treatment of industrial wastewater/liquid waste? Environ Technol 36:2115–2124. https://doi.org/10.1080/09593330.2015.1021860

    Article  CAS  Google Scholar 

  37. Collivignarelli MC, Carnevale Miino M, Baldi M et al (2019) Removal of non-ionic and anionic surfactants from real laundry wastewater by means of a full-scale treatment system. Process Saf Environ Prot 132:105–115. https://doi.org/10.1016/j.psep.2019.10.022

    Article  CAS  Google Scholar 

  38. Collivignarelli MC, Abbà A, Castagnola F, Bertanza G (2017) Minimization of municipal sewage sludge by means of a thermophilic membrane bioreactor with intermittent aeration. J Clean Prod 143:369–376. https://doi.org/10.1016/j.jclepro.2016.12.101

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Carnevale Miino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Collivignarelli, M.C., Caccamo, F.M., Carnevale Miino, M. (2022). An Innovative Technology to Minimize Biological Sludge Production and Improve Its Quality in a Circular Economy Perspective. In: Núñez-Delgado, A., Arias-Estévez, M. (eds) Emerging Pollutants in Sewage Sludge and Soils. The Handbook of Environmental Chemistry, vol 114. Springer, Cham. https://doi.org/10.1007/698_2022_852

Download citation

Publish with us

Policies and ethics

Navigation