Metal-Substituted Microporous Aluminophosphates

  • Chapter
  • First Online:
Structure and Reactivity of Metals in Zeolite Materials

Part of the book series: Structure and Bonding ((STRUCTURE,volume 178))

Abstract

This chapter aims to present the zeotypes aluminophosphates (AlPOs) as a complementary alternative to zeolites in the isomorphic incorporation of metal ions within all-inorganic microporous frameworks as well as to discuss didactically the catalytic consequences derived from the distinctive features of both frameworks. It does not intend to be a compilation of either all or the most significant publications involving metal-substituted microporous aluminophosphates. Families of AlPOs and zeolites, which include metal ion-substituted variants, are the dominant microporous materials. Both these systems are widely used as catalysts, in particular through aliovalent metal ions substitution. Here, some general description of the synthesis procedures and characterization techniques of the MeAPOs (metal-contained aluminophosphates) is given along with catalytic properties. Next, some illustrative examples of the catalytic possibilities of MeAPOs as catalysts in the transformation of the organic molecules are given. The oxidation of the hardly activated hydrocarbons has probably been the most successful use of AlPOs doped with the divalent transition metal ions Co2+, Mn2+, and Fe2+, whose incorporation in zeolites is disfavoured. The catalytic role of these MeAPOs is rationalized based on the knowledge acquired from a combination of the most advanced characterization techniques. Finally, the importance of the high specificity of the structure-directing agents employed in the preparation of MeAPOs is discussed taking N,N-methyldicyclohexylamine in the synthesis of AFI-structured materials as a driving force. It is shown how such a high specificity could be predicted and how it can open great possibilities in the control of parameters as critical in catalysis as crystal size, inter- and intracrystalline mesoporosity, acidity, redox properties, incorporation of a great variety of heteroatom ions or final environment of the metal site (surrounding it by either P or Al).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cronstedt AF (1756) Kongl Vetenskaps Academiens Handlingar Stockholm 17:120–123

    Google Scholar 

  2. http://www.iza-structure.org/databases/

  3. Baerlocher CH, McCusker LB, Olson DH (2007) Atlas of zeolite framework types, 6th edn. Elsevier, Amsterdam

    Google Scholar 

  4. Taramasso M, Perego G, Notari B (1983) US Patent 4 410 501

    Google Scholar 

  5. Barrer RM, Freund E (1974) J Chem Soc Dalton Trans 10:1049–1060

    Google Scholar 

  6. Rigutto MS, van Bekkum H (1991) Appl Catal 68:L1–L7

    CAS  Google Scholar 

  7. Dongare MK, Singh P, Moghe PP, Ratnasamy P (1991) Zeolites 11:690–693

    CAS  Google Scholar 

  8. Corma A, Nemeth LT, Renz M, Valencia S (2001) Nature 412:423–425

    CAS  PubMed  Google Scholar 

  9. Chu CT, Chang CD (1985) J Phys Chem 89:1569–1571

    CAS  Google Scholar 

  10. Calis G, Frenken P, de Boer E, Swolfs A, Hefni MA (1987) Zeolites 7:319–326

    CAS  Google Scholar 

  11. Corma A, Diaz-Cabanas MJ, Martinez-Triguero J, Rey F, Rius J (2002) Nature 418:514–517

    CAS  PubMed  Google Scholar 

  12. Sulikowski B (1996) Heterog Chem Rev 3:203–268

    CAS  Google Scholar 

  13. Barrer RM (1982) Hydrothermal chemistry of zeolites. Academic Press, London, p 251

    Google Scholar 

  14. van Bokhovena JA, Lamberti C (2014) Coord Chem Rev 277–278:275–290

    Google Scholar 

  15. Corma A, Martinez A (1995) Adv Mater 7:137–144

    CAS  Google Scholar 

  16. Ma Y, Tong W, Zhou H, Suib SL (2000) Microporous Mesoporous Mater 37:243–252

    CAS  Google Scholar 

  17. Cooper ER, Andrews CD, Wheatley PS, Webb PB, Wormald P, Morris RE (2004) Nature 430:1012–1016

    CAS  PubMed  Google Scholar 

  18. Vomscheid R, Briend M, Peltre MJ, Man PP, Barthoumeuf D (1994) J Phys Chem 98:9614–9618

    CAS  Google Scholar 

  19. Chen G, Sun Q, Yu QJ (2017) Chem Commun 53:13328–13331

    CAS  Google Scholar 

  20. Chen J, Natarajan S, Thomas JM, Jones RH, Hursthouse MB (1994) Angew Chem Int Ed 33:639–640

    Google Scholar 

  21. Gier ET, Stucky GD (1991) Nature 349:508–510

    CAS  Google Scholar 

  22. Wilson ST, Lok BM, Flanigen EM (1982) US Patent 4 310 440

    Google Scholar 

  23. Wilson ST, Lok BM, Messina CA, Cannan TR, Flanigen EM (1982) J Am Chem Soc 104:1146–1147

    CAS  Google Scholar 

  24. Forster PM, Eckert J, Chang JS, Park SE, Ferey G, Cheetham AK (2003) J Am Chem Soc 125:1309–1312

    CAS  PubMed  Google Scholar 

  25. Parise JB (1985) J Chem Soc Chem Commun 606–607

    Google Scholar 

  26. Littlefield BTR, Weller MT (2012) Nat Commun 3:1114

    PubMed  Google Scholar 

  27. Murugavel R, Choudhury A, Walawalkar MG, Pothiraja R, Rao CNR (2008) Chem Rev 108:3549–3655

    CAS  PubMed  Google Scholar 

  28. Corma A, Diaz-Cabanas M, Jorda JL, Martinez C, Moliner M (2006) Nature 443:842–845

    CAS  PubMed  Google Scholar 

  29. Sun J, Bonneau C, Cantin S, Corma A, Diaz-Cabanas MJ, Moliner M, Zhang D, Li M, Zou X (2009) Nature 458:1154–1157

    CAS  PubMed  Google Scholar 

  30. Davis ME, Saldarriaga C, Montes C, Garces J, Crowder C (1988) Nature 331:698–699

    CAS  Google Scholar 

  31. Rouhi AM (2015) Chem Eng News 93:30–31

    Google Scholar 

  32. Tian P, Wei YX, Ye M, Liu ZM (2015) ACS Catal 5:1922–1938

    CAS  Google Scholar 

  33. Messina CA, Lok BM, Flanigen EM (1985) US Patent 4 544 143

    Google Scholar 

  34. Wilson ST, Flanigen EM (1986) US Pat 4 567 029

    Google Scholar 

  35. Thomas JM, Raja R, Sankar S, Bell RG (1999) Nature 398:227–230

    CAS  Google Scholar 

  36. Raja R, Sankar G, Thomas JM (1999) J Am Chem Soc 121:11926–11927

    CAS  Google Scholar 

  37. Thomas JM, Raja R, Sankar G, Bell RG (2001) Acc Chem Res 34:191–200

    CAS  PubMed  Google Scholar 

  38. Ng EP, Mintova S (2008) Microporous Mesoporous Mater 114:1–26

    CAS  Google Scholar 

  39. Cheung O, Hedin N (2014) RSC Adv 4:14480–14494

    CAS  Google Scholar 

  40. Hartmann M, Kevan L (1996) J Chem Soc Faraday Trans 92:3661–3667

    CAS  Google Scholar 

  41. de Saldarriaga LS, Saldarriaga C, Davis ME (1987) J Am Chem Soc 109:2686–2691

    Google Scholar 

  42. Man PP, Briend M, Peltre MJ, Lamy A, Beaunier P, Barthomeuf D (1991) Zeolites 11:563–572

    CAS  Google Scholar 

  43. Feng P, Bu X, Stucky GD (1997) Nature 388:735–741

    CAS  Google Scholar 

  44. Camblor MA, Corma A, Valencia S (1996) Chem Commun 2365–2366

    Google Scholar 

  45. Camblor MA, Villaescusa LA, Diaz-Cabanas MJ (1999) Top Catal 9:59–76

    CAS  Google Scholar 

  46. Lechert H (2004) Microporous Mesoporous Mater 22:519–523

    Google Scholar 

  47. Ren X, Komarneni S, Roy DM (1991) Zeolites 11:142–148

    CAS  Google Scholar 

  48. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, Houston

    Google Scholar 

  49. Davis ME, Lobo RF (1992) Chem Mater 4:756–768

    CAS  Google Scholar 

  50. Cundy CS, Cox PA (2003) Chem Rev 103:663–702

    CAS  PubMed  Google Scholar 

  51. Prasad S, Liu SB (1994) Chem Mater 6:633–635

    CAS  Google Scholar 

  52. O’Brien MG, Beale AM, Catlow CRA, Weckhuysen BM (2006) J Am Chem Soc 128:11744–11745

    PubMed  Google Scholar 

  53. Beale AM, O’Brien M, Kasunic M, Golobic A, Sanchez Sanchez M, AJW L, Lewis DW, Wragg DS, Nikitenko S, Bras W, Weckhuysen BM (2011) J Phys Chem C 115:6331–6340

    CAS  Google Scholar 

  54. Valyocsik EW, Rollmann LD (1985) Zeolites 5:123–125

    CAS  Google Scholar 

  55. Ren L, Zhu L, Yang C, Chen Y, Sun Q, Zhang H, Li C, Nawaz F, Meng X, **ao FS (2011) Chem Commun 47:9789–9791

    CAS  Google Scholar 

  56. Wilson ST, Lok BM, Messina CA, Cannan TR, Flanigen EM (1983) In: Stucky GD, Dwyer FG (eds) Intrazeolite chemistry, ACS Symposium Series 218, American Chemical Society, Washington, DC, p 79

    Google Scholar 

  57. Ojo AF, McCusker LB (1991) Zeolites 11:460–465

    CAS  Google Scholar 

  58. Akolekar DB, Kaliaguine S (1993) J Chem Soc Faraday Trans 89:4141–4147

    CAS  Google Scholar 

  59. Akolekar DB (1995) Zeolites 15:583–590

    CAS  Google Scholar 

  60. Kumar R, Bhaumik A, Ahedi RK, Ganapathy S (1996) Nature 381:298–300

    CAS  Google Scholar 

  61. Annen MJ, Davis ME, Higgins JB, Schlenker JL (1991) J Chem Soc Chem Commun 1175–1176

    Google Scholar 

  62. Annen MJ, Davis ME (1993) Microporous Mater 1:57–65

    CAS  Google Scholar 

  63. Takewaki T, Beck LW, Davis ME (1999) J Phys Chem B 103:2674–2679

    CAS  Google Scholar 

  64. Zhang X, Liu P, Wu Y, Yao Y, Wang J (2010) Catalogue Lett 137:210–215

    CAS  Google Scholar 

  65. Flanigen EM, Lok BM, Patton RL, Wilson ST (1986) Stud Surf Sci Catal 28:103–112

    CAS  Google Scholar 

  66. Qiu S, Tian W, Pang W, Sun T, Jiang D (1991) Zeolites 11:371–375

    CAS  Google Scholar 

  67. Barthomeuf D (1994) Zeolites 14:394–401

    CAS  Google Scholar 

  68. Blasco T, Chica A, Corma A, Murphy W, Agundez-Rodriguez J, Perez-Pariente J (2006) J Catal 242:153–161

    CAS  Google Scholar 

  69. Sanchez-Sanchez M, Gomez-Hortiguela L, Sankar G (2008) Microporous Mesoporous Mater 114:485–494

    CAS  Google Scholar 

  70. Zanjanchi MA, Ghanadzadeh A, Khadem-Nahvi F (2002) J Incl Phenom Macrocycl Chem 42:295–299

    CAS  Google Scholar 

  71. Maurelli S, Vishnuvarthan M, Berlier G, Chiesa M (2012) Phys Chem Chem Phys 14:987–995

    CAS  PubMed  Google Scholar 

  72. Barrett PA, Sankar G, Stephenson R, Catlow CRA, Thomas JM, Jones RH, Teat SJ (2006) Solid State Sci 8:337–341

    CAS  Google Scholar 

  73. Muncaster G, Davies AT, Sankar G, Catlow CRA, Thomas JM, Colston SL, Barnes P, Waltonc RI, O’Hare D (2000) Phys Chem Chem Phys 2:3523–3527

    CAS  Google Scholar 

  74. Sanchez-Sanchez M, Romero AA, Pinilla-Herrero I, Sastre E (2017) Catal Today 296:239–246

    CAS  Google Scholar 

  75. Duncan B, Stocker M, Gwinup D, Szotak R, Vinje V (1993) Bull Soc Chim Fr 129:98–110

    Google Scholar 

  76. McCusker LB, Baerlocher C, Jahn E, Bulow M (1991) Zeolites 11:308–313

    CAS  Google Scholar 

  77. Martens JA, Janssens C, Grobet PJ, Beyer HK, Jacobs PA (1989) Stud Surf Sci Catal 49:215–225

    Google Scholar 

  78. Gabelica Z, Louti A, Borges C, Ribeiro MF, Lourenco JP, Murphy DM (2004) Stud Surf Sci Catal 154:1649–1654

    Google Scholar 

  79. Sierra L, Patarin J, Guth JL (1997) Microporous Mater 11:19–35

    CAS  Google Scholar 

  80. Harding MM, Kariuki BM (1994) Acta Cryst C50:852–854

    CAS  Google Scholar 

  81. Diaz-Cabanas MJ, Barrett PA, Camblor MA (1998) Chem Commun 1881–1882

    Google Scholar 

  82. Onyestyak G, Valyon J, LVC R (2001) Solid State Ionics 141–142:93–97

    Google Scholar 

  83. Bejblova M, Zones SI, Cejka J (2007) Appl Catal A Gen 327:255–260

    CAS  Google Scholar 

  84. Sanchez-Sanchez M, Sankar G, Simperler A, Bell RG, Catlow CRA, Thomas JM (2003) Catal Lett 88:163–168

    CAS  Google Scholar 

  85. Davies AT, Sankar G, Catlow CRA, Clark SM (1997) J Phys Chem 101:10115–10120

    CAS  Google Scholar 

  86. Zenonos C, Sankar G, Cora F, Lewis DW, Pankhurst AQ, Catlow CRA, Thomas JM (2002) Phys Chem Chem Phys 4:5421–5429

    CAS  Google Scholar 

  87. Patinec V, Wright PA, Lightfoot P, Aitken RA, Cox PA (1999) J Chem Soc Dalton Trans 3909–3911

    Google Scholar 

  88. Garcia R, Philp EP, Slawin AMZ, Wright PA, Cox PA (2001) J Mater Chem 11:1421–1427

    CAS  Google Scholar 

  89. Grosse-Kunstleve RW, McCusker LB, Baerlocher CH (1997) J Appl Crystallogr 30:985–995

    CAS  Google Scholar 

  90. Inge AK, Fahlquist H, Willhammar T, Huang Y, McCusker LB, Zou X (2013) J Appl Crystallogr 46:1094–1104

    CAS  Google Scholar 

  91. McCusker LB (1991) Acta Cryst A47:297–313

    CAS  Google Scholar 

  92. McCusker LB (1994) Stud Surf Sci Catal 84:341–356

    CAS  Google Scholar 

  93. Wright PA (2008) ‘Microporous framework solids’ RSC materials monographs. RSC Publishing, Cambridge, pp 79–147

    Google Scholar 

  94. Gramm F, Baerlocher CH, McCusker LB, Warrender SJ, Wright PA, Han B, Hong SB, Liu Z, Ohsuna T, Terasaki O (2006) Nature 444:79–81

    CAS  PubMed  Google Scholar 

  95. Sun J, He Z, Hovmoller S, Zou X, Gramm F, Baerlocher CH, McCusker LB (2010) Z Kristallogr Cryst Mater 225:77–85

    CAS  Google Scholar 

  96. Wright PA, Natarajan S, Thomas JM, Bell RG, Gai-Boyes PL, Jones RH, Chen J (1992) Angew Chem Int Ed 31:1472–1475

    Google Scholar 

  97. Barrett PA, Jones RH (2000) Phys Chem Chem Phys 2:407–412

    CAS  Google Scholar 

  98. Sankar G, Wyles JK, Jones RH, Thomas JM, Catlow CRA, Lewis DW, Clegg W, Coles SJ, Teat SJ (1998) Chem Commun 117–118

    Google Scholar 

  99. Simmance K, Sankar G, Bell RG, Prestipino C, van Beek W (2010) Phys Chem Chem Phys 12:559–562

    CAS  PubMed  Google Scholar 

  100. Simmance K, van Beek W, Sankar G (2015) Faraday Discuss 177:237–247

    CAS  PubMed  Google Scholar 

  101. Canesson L, Tuel A (1997) Chem Commun 241:242

    Google Scholar 

  102. Canesson L, Boudeville Y, Tuel A (1997) J Am Chem Soc 119:10754–10762

    CAS  Google Scholar 

  103. Barrie PJ, Klinowski J (1989) J Phys Chem 93:5972–5974

    CAS  Google Scholar 

  104. Shea WL, Borade RB, Clearfield A (1993) J Chem Soc Faraday Trans 89(3143):3149

    Google Scholar 

  105. Tuel A, Arcon I, Tusar NN, Meden A, Kaucic V (1996) Microporous Mater 7:271–284

    CAS  Google Scholar 

  106. Alfayate A, Sanchez-Sanchez M, Perez-Pariente J (2014) Microporous Mesoporous Mater 190:334–345

    CAS  Google Scholar 

  107. Schoonheydt RA, De Vos R, Pelgrims J, Leeman H (1989) Stud Surf Sci Catal 49:559–568

    Google Scholar 

  108. Kraushaar-Czarnetzki B, Hoogervorst WGM, Andrea RR, Emeis CA, Stork WHJ (1991) J Chem Soc Faraday Trans 87:891–895

    CAS  Google Scholar 

  109. Uytterhoeven MG, Schoonheydt RA (1994) Microporous Mater 3:265–279

    CAS  Google Scholar 

  110. Nakashiro K, Ono Y (1993) Bull Chem Soc Jpn 66:9–17

    CAS  Google Scholar 

  111. Verberckmoes AA, Uytterhoeven MG, Schoonheydt RA (1997) Zeolites 19:180–189

    CAS  Google Scholar 

  112. Verberckmoes AA, Uytterhoeven MG, Schoonheydt RA (1998) Microporous Mesoporous Mater 22:165–178

    CAS  Google Scholar 

  113. Weckhuysen BM, Rao RR, Martens JA, Schoonheydt RA (1999) Eur J Inorg Chem 1999:565–577

    Google Scholar 

  114. Tusar NN, Mali G, Arcon I, Kaucic V, Ghanbari-Siahkali A, Dwyer J (2002) Microporous Mesoporous Mater 55:203–216

    CAS  Google Scholar 

  115. Weckhuysen BM, Verberckmoes AA, Uytterhoeven MG, Mabbs FE, Collison D, de Boer E, Schoonheydt RA (2000) J Phys Chem B 104:37–42

    CAS  Google Scholar 

  116. Barrett PA, Sankar G, Catlow CRA, Thomas JM (1996) J Phys Chem 100:8977–8985

    CAS  Google Scholar 

  117. Chen J, Thomas JM (1994) J Chem Soc Chem Commun 603–604

    Google Scholar 

  118. Chen J, Thomas JM, Sankar G (1994) J Chem Soc Faraday Trans 90:3455–3459

    CAS  Google Scholar 

  119. Thomas JM, Greaves GN, Sankar G, Wright PA, Chen J, Dent AJ, Marchese L (1994) Angew Chem Int Ed 33:1871–1873

    Google Scholar 

  120. Hartmann M, Elangovan SP (2009) Adv Nanoporous Mater 1:237–312

    Google Scholar 

  121. Hartmann M, Kevan L (1999) Chem Rev 99:635–663

    CAS  PubMed  Google Scholar 

  122. Hartmann M, Kevan L (2002) Res Chem Intermed 28:625–695

    CAS  Google Scholar 

  123. Kurshev V, Kevan L, Parillo DJ, Pereira C, Kokotailo GT, Gorte RJ (1994) J Phys Chem 98:10160–10166

    CAS  Google Scholar 

  124. Nagarajan V, Rings D, Moschkowitz L, Hartmann M, Poppl A (2005) Chem Lett 34:1614–1615

    CAS  Google Scholar 

  125. Prakash AM, Hartmann M, Zhu Z, Kevan L (2000) J Phys Chem B 104:1610–1616

    CAS  Google Scholar 

  126. Prakash AM, Kevan L (1999) J Phys Chem 103:2214–2222

    CAS  Google Scholar 

  127. Zahedi-Niaki MH, Kaliaguine S (1999) J Phys Chem B 103:831–837

    Google Scholar 

  128. Prakash AM, Kurshev V, Kevan L (1997) J Phys Chem B 101:9794–9799

    CAS  Google Scholar 

  129. Zhu Z, Kevan L (1999) Phys Chem Chem Phys 1:199–206

    CAS  Google Scholar 

  130. Beale AM, Sankar G, Catlow CRA, Anderson PA, Green TL (2005) Phys Chem Chem Phys 7:1856–1860

    CAS  PubMed  Google Scholar 

  131. Cora F, Sankar G, Catlow CRA, Thomas JM (2002) Chem Commun 734–735

    Google Scholar 

  132. Franklin IL, Beale AM, Sankar G (2003) Catal Today 81:623–629

    CAS  Google Scholar 

  133. Ono Y (2003) J Catal 216:406–415

    CAS  Google Scholar 

  134. Zhang HX, Chokkalingam A, Subramaniam PV, Joseph S, Takeuchi S, Wei MD, Al-Enizi AM, Jang HG, Kim JH, Seo G, Komura K, Sugi Y, Vinu A (2016) J Mol Catal A Chem 412:117–124

    CAS  Google Scholar 

  135. Concepcion P, Lopez Nieto JM, Mifsud A, Perez-Pariente J (1997) Appl Catal A Gen 151:373–392

    CAS  Google Scholar 

  136. Fan W, Fan B, Song M, Chen T, Li R, Dou T, Tatsumi T, Weckhuysen BM (2006) Microporous Mesoporous Mater 94:348–357

    CAS  Google Scholar 

  137. Masters AF, Beattie JK, Roa AL (2001) Catal Lett 75:159–162

    CAS  Google Scholar 

  138. Moden B, Zhan BZ, Dakka J, Santiesteban JG, Iglesia E (2007) J Phys Chem C 111:1402–1411

    CAS  Google Scholar 

  139. Schuchardt U, Cardoso D, Sercheli R, Pereira R, da Cruz RS, Guerreiro MC, Mandelli D, Spinace EV, Pires EL (2001) Appl Catal A Gen 211:1–17

    CAS  Google Scholar 

  140. Vanoppen DL, De Vos DE, Genet MJ, Rouxhet PG, Jacobs PA (1995) Angew Chem Int Ed 34:560-563

    Google Scholar 

  141. Wang XH, Li J, Wan YJ, Yan JL, Zhang BQ, Liu XF (2010) Chin Sci Bull 55:4112–4115

    CAS  Google Scholar 

  142. Moden B, Oliviero L, Dakka J, Santiesteban JG, Iglesia E (2004) J Phys Chem B 108:5552–5563

    CAS  Google Scholar 

  143. Moden B, Zhan BZ, Dakka J, Santiesteban JG, Iglesia E (2006) J Catal 239:390–401

    CAS  Google Scholar 

  144. Dugal M, Sankar G, Raja R, Thomas JM (2000) Angew Chem Int Ed 39:2310–2313

    CAS  Google Scholar 

  145. Sankar G, Raja R, Thomas JM (1998) Catal Lett 55:15–23

    CAS  Google Scholar 

  146. Raja R, Sankar G, Thomas JM (2000) Angew Chem Int Ed 39:2313–2316

    CAS  Google Scholar 

  147. Cora F, Gomez-Hortiguela L, Catlow CRA (2012) Proc R Soc A 468:2053–2069

    CAS  Google Scholar 

  148. Gomez-Hortiguela L, Cora F, Catlow CRA (2011) ACS Catal 1:18–28

    CAS  Google Scholar 

  149. Gomez-Hortiguela L, Cora F, Catlow CRA (2011) ACS Catal 1:945–955

    CAS  Google Scholar 

  150. Gomez-Hortiguela L, Cora F, Catlow CRA (2011) ACS Catal 1:1487–1497

    CAS  Google Scholar 

  151. Gomez-Hortiguela L, Cora F, Catlow CRA (2011) ACS Catal 1:1475–1486

    CAS  Google Scholar 

  152. Gomez-Hortiguela L, Cora F, Catlow CRA (2012) J Phys Chem C 116:6691–6702

    CAS  Google Scholar 

  153. Gomez-Hortiguela L, Cora F, Catlow CRA (2013) Phys Chem Chem Phys 15:6870–6874

    CAS  PubMed  Google Scholar 

  154. Gomez-Hortiguela L, Cora F, Sankar G, Zicovich-Wilson C, Catlow CRA (2010) Chem Eur J 16:13638–13645

    CAS  PubMed  Google Scholar 

  155. Gomez-Hortiguela L, Cora F, Catlow CRA (2013) Modelling and simulation in the science of micro- and meso-porous materials. Elsevier, Amsterdam, pp 265–295

    Google Scholar 

  156. Raja R, Lee SO, Sanchez-Sanchez M, Sankar G, Harris KDM, Johnson BFG, Thomas JM (2002) Top Catal 20:85–88

    CAS  Google Scholar 

  157. Potter ME, Paterson AJ, Raja R (2012) ACS Catal 2:2446–2451

    CAS  Google Scholar 

  158. Shiju NR, Fiddy S, Sonntag O, Stockenhuber M, Sankar G (2006) Chem Commun 4955–4957

    Google Scholar 

  159. Wei W, Moulijn JA, Mul G (2008) Microporous Mesoporous Mater 112:193–201

    CAS  Google Scholar 

  160. Raja R, Thomas JM, Sankar G (1999) Chem Commun 829:830

    Google Scholar 

  161. Raja R, Thomas JM, Sankar G (1999) Chem Commun 525–526

    Google Scholar 

  162. Hentit H, Bachari K, Ouali MS, Womes M, Benaichouba B, Jumas JC (2007) J Mol Catal A Chem 275:158–166

    CAS  Google Scholar 

  163. Raja R, Sankar G, Thomas JM (2001) J Am Chem Soc 123:8153–8154

    CAS  PubMed  Google Scholar 

  164. Chatterjee S, Bhanja P, Paul L, Bhaumik A (2018) Dalton Trans 47:791–798

    CAS  PubMed  Google Scholar 

  165. Wu JY, Chien SH, Wan BZ (2001) Ind Eng Chem Res 40:94–100

    CAS  Google Scholar 

  166. Zahedi-Niaki MH, Xu GY, Meyer H, Fyfe CA, Kaliaguine S (1999) Microporous Mesoporous Mater 32:241–250

    CAS  Google Scholar 

  167. Li J, Yu J, Xu R (2012) Proc R Soc A 468:1955–1967

    CAS  Google Scholar 

  168. Sanchez-Sanchez M, Serrano DP, van Grieken R, Melero JA (2007) Stud Surf Sci Catal 170:499–505

    Google Scholar 

  169. Wright PA, Jones RH, Natarajan S, Bell RG, Chen JS, Hursthouse MB, Thomas JM (1993) J Chem Soc Chem Commun 633–635

    Google Scholar 

  170. Yu J, Xu R (2010) Acc Chem Res 43:1195–1204

    CAS  PubMed  Google Scholar 

  171. Sanchez-Sanchez M, Sankar G (2004) Stud Surf Sci Catal 154:1021–1027

    Google Scholar 

  172. Lok BM, Cannan TR, Messina CA (1983) Zeolites 3:282–291

    CAS  Google Scholar 

  173. Cundy CS, Cox PA (2005) Microporous Mesoporous Mater 82:1–78

    CAS  Google Scholar 

  174. Alvaro-Munoz T, Marquez-Alvarez C, Sastre E (2012) Catal Today 179:27–34

    CAS  Google Scholar 

  175. Akolekar DB (1993) J Catal 143:227–238

    CAS  Google Scholar 

  176. Flanigen EM, Lok BM, Patton RL, Wilson ST (1986) Pure Appl Chem 58:1351–1358

    CAS  Google Scholar 

  177. Nakashiro K, Ono Y (1991) J Chem Soc Faraday Trans 87:3309–3313

    CAS  Google Scholar 

  178. Machado MS, Perez-Pariente J, Sastre E, Cardoso D, Giotto MV, Garcia-Fierro JL, Fornes V (2002) J Catal 205:299–308

    CAS  Google Scholar 

  179. Akolekar DB (1994) Catal Lett 28:249–262

    CAS  Google Scholar 

  180. Manjon-Sanz A, Sanchez-Sanchez M, Munoz-Gomez P, Garcia R, Sastre E (2010) Microporous Mesoporous Mater 131:331–341

    CAS  Google Scholar 

  181. Manjon-Sanz A, Sanchez-Sanchez M, Sastre E (2012) Catal Today 179:102–114

    Google Scholar 

  182. Roldan R, Sanchez-Sanchez M, Sankar G, Romero-Salguero FJ, Jimenez-Sanchidrian C (2007) Microporous Mesoporous Mater 99:288–298

    CAS  Google Scholar 

  183. Jhung SH, Hwang YK, Chang JS, Park SE (2004) Microporous Mesoporous Mater 67:151–157

    CAS  Google Scholar 

  184. Egeblad K, Christensen CH, Kustova M, Christensen CH (2008) Chem Mater 20:946–960

    CAS  Google Scholar 

  185. Karanikolos GN, Garcia H, Corma A, Tsapatsis M (2008) Microporous Mesoporous Mater 115:11–22

    CAS  Google Scholar 

  186. Veziri CM, Palomino M, Karanikolos GN, Corma A, Kanellopoulos NK, Tsapatsis M (2010) Chem Mater 22:1492–1502

    CAS  Google Scholar 

  187. Wu LL, Hensen EJM (2014) Catal Today 235:160–168

    CAS  Google Scholar 

  188. Bonilla MR, Valiullin R, Karger J, Bhatia SK (2014) J Phys Chem C 118:14355–14370

    CAS  Google Scholar 

  189. Schmidt I, Madsen C, Jacobsen CJH (2000) Inorg Chem 39:2279–2283

    CAS  PubMed  Google Scholar 

  190. Jacobsen CJH, Madsen C, Houzvicka J, Schmidt I, Carlsson A (2000) J Am Chem Soc 122:7116–7117

    CAS  Google Scholar 

  191. Sanchez-Sanchez M, Manjon-Sanz A, Diaz I, Mayoral A, Sastre S (2013) Cryst Growth Des 13:2476–2485

    CAS  Google Scholar 

  192. Renz M, Blasco T, Corma A, Fornes V, Jensen R, Nemeth L (2002) Chem Eur J 8:4708–4716

    CAS  PubMed  Google Scholar 

  193. Corma A, Domine ME, Nemeth L, Valencia S (2002) J Am Chem Soc 124:3194–3195

    CAS  PubMed  Google Scholar 

  194. Sanchez-Sanchez M, van Grieken R, Serrano DP, Melero JA (2009) J Mater Chem 19:6833–6841

    CAS  Google Scholar 

  195. Notari B (1996) Adv Catal 41:253–334

    CAS  Google Scholar 

  196. Corma A, Camblor MA, Esteve P, Martinez A, Perez-Pariente J (1994) J Catal 145:151–158

    CAS  Google Scholar 

  197. Torres JC, Cardoso PR (2010) Microporous Mesoporous Mater 136:97–105

    CAS  Google Scholar 

  198. Alfayate A, Marquez-Alvarez C, Grande-Casas M, Bernardo-Maestro B, Sanchez-Sanchez M, Perez-Pariente J (2013) Catal Today 213:211–218

    CAS  Google Scholar 

  199. Alfayate A, Marquez-Alvarez C, Grande-Casas M, Sanchez-Sanchez M, Perez-Pariente J (2014) Catal Today 227:57–64

    CAS  Google Scholar 

  200. Mayoral A, Sanchez-Sanchez M, Alfayate M, Perez-Pariente J, Diaz I (2015) ChemCatChem 7:3719–3724

    CAS  Google Scholar 

  201. Alfayate A, Sepulveda R, Sanchez-Sanchez M, Perez-Pariente J (2016) Top Catal 59:326–336

    CAS  Google Scholar 

  202. Ovejero G, van Grieken R, Uguina MA, Serrano DP, Melero JA (1996) Catal Lett 41:69–78

    CAS  Google Scholar 

  203. Winoto HP, Ahn BS, Jae JJ (2016) Ind Eng Chem 40:62–71

    CAS  Google Scholar 

  204. Padovan D, Al-Nayili A, Hammond C (2017) Green Chem 19:2846–2854

    CAS  Google Scholar 

  205. Tuel A, Taarit YB (1994) J Chem Soc Chem Commun 14:1667–1668

    Google Scholar 

  206. Blasco T, Fernandez L, Martinez-Arias A, Sanchez-Sanchez M, Concepcion P, Lopez-Nieto JM (2000) Microporous Mesoporous Mater 39:219–228

    CAS  Google Scholar 

  207. Gianotti E, Manzoli M, Potter ME, Shetti VN, Sun D, Paterson J, Mezza TM, Levy A, Raja R (2014) Chem Sci 5:1810–1819

    CAS  Google Scholar 

  208. Zhou LP, Xu J, Chen C, Wang F, Li XQ (2008) J Porous Mater 15:7–12

    Google Scholar 

  209. Leithall RM, Shetti VN, Maurelli S, Chiesa M, Gianotti E, Raja R (2013) J Am Chem Soc 135:2915–2918

    CAS  PubMed  Google Scholar 

  210. O’Brien MG, Sanchez-Sanchez M, Beale AM, Lewis DW, Sankar G, Catlow CRA (2007) J Phys Chem C 111:16951–16961

    Google Scholar 

  211. Harris TV, Zones SI (1994) Stud Surf Sci Catal 84:29–36

    CAS  Google Scholar 

Download references

Acknowledgements

GS thank EPSRC and Royal Society for funding. MSS acknowledges the financing by the Spanish State Research Agency (AEI) and the European Regional Development Fund (FEDER) through the Project MAT2016-77496-R (AEI/FEDER, UE). Thanks to Dr. A. Alfayate for kindly providing us a figure.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gopinathan Sankar or Manuel Sánchez-Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sankar, G., Sánchez-Sánchez, M. (2018). Metal-Substituted Microporous Aluminophosphates. In: Pérez Pariente, J., Sánchez-Sánchez, M. (eds) Structure and Reactivity of Metals in Zeolite Materials. Structure and Bonding, vol 178. Springer, Cham. https://doi.org/10.1007/430_2018_25

Download citation

Publish with us

Policies and ethics

Navigation