Part of the book series: Progress in Mathematics ((PM,volume 248))

Abstract

The well known Andrews-Curtis Conjecture [2] is still open. In this paper, we establish its finite version by describing precisely the connected components of the Andrews-Curtis graphs of finite groups. This finite version has independent importance for computational group theory. It also resolves a question asked in [5] and shows that a computation in finite groups cannot lead to a counterexample to the classical conjecture, as suggested in [5].

To Slava Grigorchuk as a token of our friendship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Akbut and R. Kirby, ‘A potential smooth counterexample in dimension 4 to the Poincare conjecture, the Schoenflies conjecture, and the Andrews-Curtis conjecture’, Topology 24 (1985), 375–390.

    MathSciNet  Google Scholar 

  2. J. J. Andrews and M. L. Curtis, ‘Free groups and handlebodies’, Proc. Amer. Math. Soc. 16 (1965), 192–195.

    MathSciNet  Google Scholar 

  3. L. Bartholdi, R. I. Grigorchuk and Z. Sunik, ‘Branch groups’, in Handbook of Algebra, vol. 3 (M. Hazelwinkel, ed.), 2003.

    Google Scholar 

  4. A. V. Borovik, ‘Centralisers of involutions in black box groups’, Computational and Statistical Group Theory (R. Gilman et al., eds.), Contemporary Mathematics 298 (2002), 7–20; math.GR/0110233.

    Google Scholar 

  5. A. V. Borovik, E. I. Khukhro, A. G. Myasnikov, ‘The Andrews-Curtis Conjecture and black box groups’, Int. J. Algebra and Computation 13 no. 4 (2003), 415–436; math.GR/0110246.

    MathSciNet  Google Scholar 

  6. F. Celler, C. Leedham-Green, S. Murray, A. Niemeyer and E. O’Brien, ‘Generating random elements of a finite group’, Comm. Algebra 23 (1995), 4931–4948.

    MathSciNet  Google Scholar 

  7. P. Diaconis and R. Graham, ‘The graph of generating sets of an abelian group’, Colloq. Math. 80 (1999), 31–38.

    MathSciNet  Google Scholar 

  8. R. I. Grigorchuk, ‘Degrees of growth of finitely generated groups and the theory of invariant means’, Math. USSR — Izv. 25 no. 2 (1985), 259–300.

    MATH  MathSciNet  Google Scholar 

  9. R. I. Grigorchuk, ‘Just infinite branch groups’, in New Horizons in pro-p-groups (M. P. F. du Sautoy, D. Segal and A. Shalev, eds.), Birkhäuser, Boston, 2000, 121–179.

    Google Scholar 

  10. W. Kantor and A. Seress, ‘Black box classical groups’, Memoirs Amer. Math. Soc. 149 no. 708, Amer. Math. Soc., Providence, RI, 2000.

    Google Scholar 

  11. D. A. Kazhdan, ‘On the connection of the dual space of a group with the structure of its closed subgroups’, Funkcional. Anal. i Prilozh. 1 (1967), 71–74.

    MATH  Google Scholar 

  12. C. R. Leedham-Green and S. H. Murray, ‘Variants of product replacement’, Computational and statistical group theory (R. Gilman et al., eds.), Contemp. Math. 298 (2002), 97–104.

    Google Scholar 

  13. Y. G. Leonov, ‘The conjugacy problem in a class of 2-groups’, Mat. Zametki 64 no. 4 (1998), 573–583.

    MATH  MathSciNet  Google Scholar 

  14. A. Lubotzky and I. Pak, ‘The product replacement algorithm and Kazhdan’s property (T)’, J. Amer. Math. Soc. 14 (2001), 347–363.

    Article  MathSciNet  Google Scholar 

  15. K. Mueller, ‘Probleme des einfachen Homotopietyps in niederen Dimensionen und ihre Behandlung mit Mitteln der topologischen Quantenfeldtheorie’, Ph. D. Thesis, Frankfurt.

    Google Scholar 

  16. A. G. Myasnikov, ‘Extended Nielsen transformations and the trivial group’, Math. Notes 35 no. 3–4 (1984), 258–261.

    MATH  MathSciNet  Google Scholar 

  17. B. H. Neumann and H. Neumann, ‘Zwei Klassen characteristischer Untergruppen und ihre Faktorgruppen’, Math. Nachr. 4 (1951), 106–125.

    MathSciNet  Google Scholar 

  18. I. Pak, ‘What do we know about the product replacement algorithm’, in Groups and Computation III (W. Kantor and A. Seress, eds.), DeGruyter, Berlin, 2001, pp. 301–348.

    Google Scholar 

  19. A. V. Rozhkov, ‘The conjugacy problem in an automorphism group of an infinite tree’, Mat. Zametki 64 no. 4 (1998), 592–597.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Borovik, A.V., Lubotzky, A., Myasnikov, A.G. (2005). The Finitary Andrews-Curtis Conjecture. In: Bartholdi, L., Ceccherini-Silberstein, T., Smirnova-Nagnibeda, T., Zuk, A. (eds) Infinite Groups: Geometric, Combinatorial and Dynamical Aspects. Progress in Mathematics, vol 248. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7447-0_2

Download citation

Publish with us

Policies and ethics

Navigation