On helices resulting from a cooperative Jahn-Teller effect in hexagonal perovskites

  • Chapter
  • First Online:
Iron-Sulfur Proteins Perovskites

Part of the book series: Structure and Bonding ((STRUCTURE,volume 83))

Abstract

Based on the observations of the cooperative E ⊗ ε Jahn-Teller effect (JTE) in compounds with the hexagonal perovskite structure (ABX3 2L compounds with an h-stacking) the occurrence and non-occurrence of helical structures as e.g. in CsCuCl3 and [N(CH3 )4]CuCl3 (TMCuCl3) are discussed. In particular the relative magnitude of the radii of Rb+ and Cs+ with respect to the radius of CI can explain the difference in structure of RbCuCl3 and CSCuCl3. This can be shown by comparing new neutron diffraction measurements of the acoustic phonon modes in CsFeCl3 with those previously determined for RbFeCl3. The acoustic phonon branches also demonstrate the phenomenon of structural resonance, which leads to energy lowering in cases of formation of helices. It is further shown that, in order to form a structural helix, displacements of ions related to ferro-electricity as well as to ferro-elasticity are necessary. The quadrupolar distortions resulting from the E ⊗ ε JTE are therefore complemented with dipolar shifts of layers perpendicular to the c-axis of the structure of CsCuCl3. The structure of CsCuBr3 is also shown to belong to this family of helices. It arises through distortion waves at the A-point in the first Brillouin zone and changes from an h-stacking to an hc-stacking of layers. Although a phase transition between the chloride and the bromide has not been observed, the deformation in CsCuBr3 reminds us of a Spin-Peierls transition. A new mechanism connected with ferromagnetic exchange along the columns of octahedra is proposed to explain the structure of β-RbCrCl3 and the low temperature structures (space group C2) of CsCrCl3 and RbCrCl3. The larger radius of Cs+ can explain why the β-RbCrCl3 structure does not occur for CSCrCl3. The structures having the C2 spacegroup resemble racemic dl-compounds. The question about the stability of the helix in β-CsCuCl3 remains difficult to answer without calculations. As experiment shows, other influences can easily disturb its formation. Probably because of the smaller radius of Cue+ with respect of Cr2+, the electrostatic energy stabilizes β-CsCuCl3 with respect to γ-CsCrCl3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schlueter AW, Jacobson RA, Rundle RE (1966) Inorg Chem 5: 277–280

    Article  CAS  Google Scholar 

  2. Weenk JW, Spek AL (1976) Cryst Struct Comm 5: 805–810

    CAS  Google Scholar 

  3. Willet RD, Bond MR, Haije WG, Soonieus OPM, Maaskant WJA (1989) Inorg Chem 27: 614–620 (see also 28: 810)

    Article  Google Scholar 

  4. Ting-i Li, Stucky GD (1973) Inorg Chem 12: 441–445

    Article  Google Scholar 

  5. Kroese CJ, Tindemans van Eyndhoven JCM, Maaskant WJA (1971) Solid State Commun 9: 1707–1709

    Article  CAS  Google Scholar 

  6. Kroese CJ, Maaskant WJA, Verschoor GC (1974) Acta Crystallogr B30: 1053–1056

    Google Scholar 

  7. Crama WJ (1981) Acta Crystallogr. B37: 2133–2136

    CAS  Google Scholar 

  8. Crama WJ (1980) Thesis University of Leiden; The Netherlands

    Google Scholar 

  9. Lüthi B (1969) Private communication (see [16])

    Google Scholar 

  10. Graf HA, Tanake H, Dachs H, Pyka N, Schotte U, Shirane G (1986) Solid State Commun 57: 469–472

    Article  CAS  Google Scholar 

  11. Graf HA, Shirane G, Schotte U, Dachs H, Pyka N, Iizumi M (1989) J Phys; Condens. Matter 1: 3743–3763

    Article  CAS  Google Scholar 

  12. Schotte U (1987) Z Phys B66: 91–101

    Article  Google Scholar 

  13. Schotte U, Graf HA, Dachs H (1989) J Phys; Condens Matter 1: 3765–3787

    Article  CAS  Google Scholar 

  14. Pyka N, Schotte U, Graf HA, Dachs H (1989) Solid State Commun 70: 1105–1108

    Article  CAS  Google Scholar 

  15. Hirotsu S (1975) J Phys C: Solid State Phys 8 L: 12–16

    Article  Google Scholar 

  16. Kroese CJ, Maaskant WJA (1974) Chem Phys 5: 224–233

    Article  CAS  Google Scholar 

  17. Hirotsu S (1977) J Phys C: Solid State Phys 10: 967–985

    Article  CAS  Google Scholar 

  18. Hirakawa K, Yamada l, Kurogi Y (1970) Proc Int Conf Magn, Grenoble (J Phys 32, Suppl. C-1: 890–891 (1971)

    Google Scholar 

  19. Reinen D, Friebel C (1979) Structure and Bonding, Springer Verlag, Berlin, Vol. 37, pp 1–60

    Google Scholar 

  20. Tindemans-van Eyndhoven JCM, Kroese CJ (1975) J Phys C: Solid State Phys 8: 3963–3974

    Article  Google Scholar 

  21. Kroese CJ (1976) Thesis University of Leiden; The Netherlands

    Google Scholar 

  22. Tindemans-van Eyndhoven JCM (1978) Thesis University of Leiden; The Netherlands

    Google Scholar 

  23. Petitgrand D, Hennison B, Escribe-Filippini C, Legrand S (1981) J Phys C-6, 42: 782–784

    Google Scholar 

  24. Heine V, McConnell JDC (1984) J. Phys. C: Solid State Phys. 17: 1199–1220

    Article  CAS  Google Scholar 

  25. McConnell JDC, Heine V (1984) Acta Crystallogr. A40: 473–482

    CAS  Google Scholar 

  26. Maaskant WJA, Haije WG (1986) J Phys C: Solid State Phys 19: 5259–5308

    Article  Google Scholar 

  27. Haije WG, Maaskant WJA (1988) J Phys C: Solid State Phys 21: 5337–5350

    Article  CAS  Google Scholar 

  28. Laiho R, Natarajan M, Kaira M (1973) Phys. Status. Solidi a15: 311–317

    Google Scholar 

  29. Fernández J, Tello MJ, Peraza J, Bocanegra EH (1976) Mat Res-Bull 11: 1161–1168

    Article  Google Scholar 

  30. Khomskii DL (1977) JETP Lett. 25: 544–546

    Google Scholar 

  31. Lee BS (1979) J Phys C: Solid State Phys 12: 855–863

    Article  CAS  Google Scholar 

  32. Vasudevan S., Shaikh AM, Rao CNR (1979) Phys Lett 70A: 446

    Google Scholar 

  33. Tanaka H, Dachs H, Iio K, Nagata K (1986) J Phys C: Solid State Phys 19: 4861–4878

    Article  CAS  Google Scholar 

  34. Tanaka H, Dachs H, Iio K, Nagata K (1986) J Phys C: Solid State Phys 19: 4879–4896

    Article  CAS  Google Scholar 

  35. Tanaka H, Iio K, Nagata K (1981) J Phys Soc Japan 50: 727–728

    Article  CAS  Google Scholar 

  36. Tanaka H, Tazuke Y, Iio K, Nagata K (1983) J Phys Soc Japan 52: Suppl. 76

    Google Scholar 

  37. Tazuke Y, Tanaka H, Iio K, Nagata K (1981) J Phys Soc Japan 50: 3919–3924

    Article  CAS  Google Scholar 

  38. Tazuke Y, Tanaka H, Iio K, Nagata K (1984) J Phys Soc Japan 53: 3991–3197

    Article  Google Scholar 

  39. Gesi K, Osawa K (1984) J Phys Soc Japan 53: 907–909

    Article  CAS  Google Scholar 

  40. Crama WJ, Maaskant WJA (1983) Physica 121 B+C: 219–232

    CAS  Google Scholar 

  41. Höck KH, Schröder G, Thomas H (1978) Z Phys B30: 403–413

    Google Scholar 

  42. Crama WJ (1981) J Solid State Chem 39: 168–172

    Article  CAS  Google Scholar 

  43. Harada M (1982) J Phys Soc Japan 51: 2053–2054

    Article  CAS  Google Scholar 

  44. Harada M (1983) J Phys Soc Japan 52: 1646–1657

    Article  CAS  Google Scholar 

  45. Harada M, Fischer JE, Shirane G, Yamada Y (1987) J Phys Soc Japan 56: 3786–3788

    Article  CAS  Google Scholar 

  46. Crama WJ, Maaskant WJA, Verschoor GC (1974) Acta Crystallogr B34: 1973–1974

    Google Scholar 

  47. Haije WJ, Frikkee E, Doorenbos G, Maaskant WJA, Visser D (1990) “Netherlands Energy Research Foundation E.C.N.”. Quaterly Progress Report of the Physics Department, period 1-9-'88 to 31-12-'88, compiled by J Bergsma

    Google Scholar 

  48. Harrison A, Visser D (1989) J Phys: Cond Matter 1: 733–754

    Article  CAS  Google Scholar 

  49. Jouini N, Guen L, Toumoux M (1982) Mat Res Bull 17: 1421–1427

    Article  CAS  Google Scholar 

  50. Visser D, Verschoor GC, Udo DJW (1980) Acta Crystallogr B36: 28–34

    Google Scholar 

  51. Pauling L (1960) Nature of the Chemical Bond, 3rd ed., Cornell University Press, Ithaca New York

    Google Scholar 

  52. Shannon RD, Prewitt CT (1970) Acta Crystallogr. B25: 925–946 (1969) and B26: 1046–1048

    Google Scholar 

  53. Haije WG, Dobbelaar JAL, Welter MH, Maaskant WJA (1987) Chem Phys 116: 159–170 (1987)

    Article  CAS  Google Scholar 

  54. Stucky GD, D'Agostino S, McPherson G (1966) J Am Chem Soc 88: 4828–4831

    Article  CAS  Google Scholar 

  55. McPherson GL, McPherson AM, Atwood JL (1980) J Phys Chem Solids 41: 495–499

    Article  CAS  Google Scholar 

  56. McPherson GL, Stucky GD (1972) J Chem Phys 57: 3780–3786

    Article  CAS  Google Scholar 

  57. Ting-i Li, Stucky GD (1973) Acta Crystallogr B29: 1529–1532

    Google Scholar 

  58. Goodyear J, Kennedy DJ (1972) Acta Crystallogr B28: 1640–1641

    Google Scholar 

  59. Seifert HJ, Dan E (1972) Z Anorg Allg Chemie 391: 302–312

    Article  CAS  Google Scholar 

  60. Cox DE, Merkert FC (1972) J Cryst Growth 13/14: 282–284

    Article  Google Scholar 

  61. Crama WJ, Bakker M, Verschoor GC, Maaskant WJA (1979) Acta Crystallogr B35: 1875–1877

    CAS  Google Scholar 

  62. Leech DH, Machin DJ (1974) J.C.S. Chem Com 866–867

    Google Scholar 

  63. Leech DH, Machin DJ (1975) J.C.S. Dalton 1609–1614

    Google Scholar 

  64. Larkworthy LF, Trigg JK (1970) J.C.S. Chem Com 1221–1222

    Google Scholar 

  65. Perez-Mato JM, Tello MJ, Manes JL, Bocanegra EH, Fernandez J (1980) Ferroelectrics 25: 457–459

    CAS  Google Scholar 

  66. Perez-Mato JM, Manes JL, Tello MJ (1980) J Phys C: Solid State 13: 2667–2674

    Article  CAS  Google Scholar 

  67. Kahn O (1985) Z. Angewandte Chemie 24: 834–850

    Article  Google Scholar 

  68. Niel M, Cros C, Pouchard M, Chaminade JP (1977) J Solid State Chem 20: 1–8

    Article  CAS  Google Scholar 

  69. McPherson GL, Sindel LJ, Quarls HF, Frederick CB, Doumit CJ (1975) Inorg Chem 14: 1831–1834

    Article  CAS  Google Scholar 

  70. Abragam A, Bleaney B (1970) Electron Paramagnetic Resonance of Transition Ions, Clarendon Press, Oxford

    Google Scholar 

  71. Tazuke Y, Kinouchi S, Tanaka H, Iio K, Nagata K (1986) J Phys Soc Japan 55: 4020–4024

    Article  CAS  Google Scholar 

  72. Bersuker IB, Polinger VZ (1989) Vibronic Interactions in Molecules and Crystals, Springer Verlag, Berlin

    Google Scholar 

  73. Wills AP (1958) Vector Analysis with an Introduction to Tensor Analysis, Dover Publications, Inc., New York

    Google Scholar 

  74. Megaw HD (1973) Crystal Structures: A Working Approach, W.B. Saunders Company, Philadelphia

    Google Scholar 

  75. Sugano S, Tanabe Y, Kamimura H (1970) Multiplets of Transition Metal Ions in Crystals, Academic Press, New York Fig. 6.2

    Google Scholar 

  76. Crama WJ, Zandbergen HW (1981) Acta Crystallogr. B37: 1027–1031

    CAS  Google Scholar 

  77. Zandbergen HW, Udo DJW (1980) J Solid State Chem 34: 65–70

    Article  CAS  Google Scholar 

  78. Zandbergen HW, Udo DJW (1981) J Solid State Chem 38: 199–210

    Article  CAS  Google Scholar 

  79. Garcia J, Bartelome J, Navarro R, Gonzales D, Crama WJ, Maaskant WJA (1981) In: Devreese IT Recent Dev Condens Matter Phys [Pap Gen Conf] 1st 1980 Plenum New York, N.Y., Vol. 4, pp. 11–20.

    Google Scholar 

  80. Schläfer HL, Gliemann G (1967) Einführung in die Ligandenfeld Theorie: Akademische Verlagsgesellschaft, Frankfurt am Main

    Google Scholar 

  81. Kauzmann W (1957) Quantum Chemistry, Academic Press, New York

    Google Scholar 

  82. e.g. Fieser LF, Fieser M (1956) Organic Chemistry, Reinhold, New York

    Google Scholar 

  83. Ham F.S. (1972) In: Geschwind S (ed) Electron Paramagnetic Resonance, Plenum Press New York

    Google Scholar 

  84. Ham F.S (1987) Phys Rev Lett 58: 725–728

    Article  CAS  Google Scholar 

  85. Alcock NW, Putnik CF, Holt SL (1976) Inorg Chem 15: 3175–3178

    Article  CAS  Google Scholar 

  86. Adachi K, Achiwa N, Mekata M (1980) J Phys Soc Japan 49: 545–553

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 pringer-Verlag

About this chapter

Cite this chapter

Maaskant, W.J.A. (1995). On helices resulting from a cooperative Jahn-Teller effect in hexagonal perovskites. In: Iron-Sulfur Proteins Perovskites. Structure and Bonding, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-59105-2_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-59105-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59105-4

  • Online ISBN: 978-3-540-49188-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation