Weak interaction symmetries with atom traps

  • Conference paper
  • First Online:
The 4th International Conference on Exotic Nuclei and Atomic Masses

Abstract

Neutral atoms trapped with modern laser cooling techniques offer the promise of improving several broad classes of weak interaction experiments with radioactive isotopes. For nuclear β decay, demonstrated trap techniques include neutrino momentum measurements from beta-recoil coincidences, along with methods to produce highly polarized samples. These techniques enable experiments to search for non-Standard Model interactions, test whether parity symmetry is maximally violated, search for 2nd-class tensor and other tensor interactions, and search for new sources of time reversal violation. Ongoing efforts at TRIUMF, Berkeley, and Los Alamos will be highlighted. Trap experiments involving fundamental symmetries in atomic physics, such as time-reversal violating electric dipole moments and neutral current weak interactions, will be briefly mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T. Sumikama, these proceedings.

    Google Scholar 

  2. M. Beck, these proceedings.

    Google Scholar 

  3. D. Rodríguez, these proceedings.

    Google Scholar 

  4. N. Scielzo et al., Bull. Am. Phys. Soc., Div. Nucl. Phys., October 2004, JG.009.

    Google Scholar 

  5. F. Herfurth, these proceedings.

    Google Scholar 

  6. J.C. Hardy, these proceedings.

    Google Scholar 

  7. K. Jungmann, these proceedings.

    Google Scholar 

  8. P. Mueller, these proceedings.

    Google Scholar 

  9. E.L. Raab et al., Phys. Rev. Lett. 59, 2631 (1987).

    Article  ADS  Google Scholar 

  10. T.B. Swanson et al., J. Opt. Soc. Am. B 15, 2641 (1998).

    Article  ADS  Google Scholar 

  11. O. Kofoed-Hansen, Dan. Mat. Fys. Medd. 28, 1 (1954).

    Google Scholar 

  12. C.S. Adams, E. Riis, Prog. Quantum Electron. 21, 1 (1997).

    Article  ADS  Google Scholar 

  13. G.D. Sprouse, L.A. Orozco, Annu. Rev. Nucl. Part. Sci. 47, 429 (1997).

    Article  ADS  Google Scholar 

  14. J.A. Behr, Nucl. Instrum. Methods B 204, 526 (2003).

    Article  ADS  Google Scholar 

  15. N.D. Scielzo et al., Phys. Rev. Lett. 93, 102501 (2004).

    Article  ADS  Google Scholar 

  16. A. Gorelov et al., Phys. Rev. Lett. 94, 142501 (2005).

    Article  ADS  Google Scholar 

  17. E.G. Adelberger et al., Phys. Rev. Lett. 83, 1299 (1999); 83, 3101 (1999)(E). After recent mass measurements ã is being re-evaluated (K. Blaum et al. Phys. Rev. Lett. 91, 260801 (2003) and A. Garcia, Nucl. Phys. A 746, 298c (2004)).

    Article  ADS  Google Scholar 

  18. M. Trinczek et al., Phys. Rev. Lett 90, 012501 (2003).

    Article  ADS  Google Scholar 

  19. T.A. Carlson, Frances Pleasonton, C.H. Johnson, Phys. Rev. 129, 2220 (1963); T.A. Carlson et al., Phys. Rev. 169, 27 (1968).

    Article  ADS  Google Scholar 

  20. N.D. Scielzo et al., Phys. Rev. A 68, 022716 (2003).

    Article  ADS  Google Scholar 

  21. D.A. Verner et al., Astrophys. J. 465, 487 (1996).

    Article  ADS  Google Scholar 

  22. S. Abachi et al. Phys. Rev. Lett. 76, 3271 (1996).

    Article  ADS  Google Scholar 

  23. J.C. Hardy, I.S. Towner, Phys. Rev. Lett. 94, 092502 (2005).

    Article  ADS  Google Scholar 

  24. P. Herczeg, Prog. Part. Nucl. Phys. 46/2, 413 (2001), and references therein, in particular P. Langacker, S. Uma Sankar, Phys. Rev. D 40, 1569 (1989).

    Article  ADS  Google Scholar 

  25. E. Thomas et al. Nucl. Phys. A 694, 559 (2001); N. Severijns et al., to be published in Rev. Mod. Phys.

    Article  ADS  Google Scholar 

  26. S.G. Crane, et al., Phys. Rev. Lett. 86, 2967 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  27. M. Hausmann et al., Bull. Am. Phys. Soc., Div. Nucl. Phys., October 2003, BG.004.

    Google Scholar 

  28. D. Melconian et al., Nucl. Instrum. Methods B 204, 540 (2003); Bull. Am. Phys. Soc., Div. Nucl. Phys., October 2003, BG.003 and to be submitted.

    Article  ADS  Google Scholar 

  29. M.A. Rowe et al. Phys. Rev. Lett. 59, 1869 (1999).

    ADS  Google Scholar 

  30. S.B. Treiman, Phys. Rev. 110, 448 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  31. K.W. Miller, S. Dürr, C.E. Wieman, Phys. Rev. A 66, 023406 (2002).

    Article  ADS  Google Scholar 

  32. For an overview, see E.N. Fortson, P. Sandars, S. Barr, Phys. Today 56(6), 33 (2003).

    Article  Google Scholar 

  33. S. Sanguinetti, J. Guéna, M. Lintz, Ph. Jacquier, A. Wasan, M.A. Bouchiat, Eur. Phys. J. D 25, 3 (2003).

    Article  ADS  Google Scholar 

  34. J. Engel, these proceedings.

    Google Scholar 

  35. N. Scielzo, Bull. Am. Phys. Soc., April 2004, L14.004, and private communication.

    Google Scholar 

  36. H. Wilschut, private communication; J.W. Turkstra et al., Hyperfine Interact. 127, 533 (2000).

    Google Scholar 

  37. J. Bieron’ et al., J. Phys. B 37, L305 (2004).

    Article  ADS  Google Scholar 

  38. V.A. Dzuba, V.V. Flambaum, J.S.M. Ginges, Phys. Rev. A 61, 062509 (2000).

    Article  ADS  Google Scholar 

  39. S.R. Nuss-Warren et al., Nucl. Instrum. Methods A 533, 275 (2004).

    Article  ADS  Google Scholar 

  40. J. Amini, H. Gould, Phys. Rev. Lett. 91, 153001 (2003).

    Article  ADS  Google Scholar 

  41. Z.-T. Lu et al., Phys. Rev. Lett. 79, 994 (1997).

    Article  ADS  Google Scholar 

  42. W.C. Haxton, C.-P. Liu, M. Ramsey-Musolf, Phys. Rev. C 65, 045502 (2002).

    Article  ADS  Google Scholar 

  43. D. DeMille, M.G. Kozlov, physics/9801034.

    Google Scholar 

  44. J.M. Grossman et al., Phys. Rev. A 62, 062502 (2000) and references therein.

    Article  ADS  Google Scholar 

  45. J.S. Grossman et al., Phys. Rev. Lett. 83, 935 (1999).

    Article  ADS  Google Scholar 

  46. S.N. Atutov et al., Hyperfine Interact. 146–147, 83 (2003).

    Article  Google Scholar 

  47. S.N. Atutov et al., Phys. Rev. A 67, 053401 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Società Italiana di Fisica / Springer-Verlag

About this paper

Cite this paper

Behr1, J.A. et al. (2005). Weak interaction symmetries with atom traps. In: Gross, C.J., Nazarewicz, W., Rykaczewski, K.P. (eds) The 4th International Conference on Exotic Nuclei and Atomic Masses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-37642-9_190

Download citation

  • DOI: https://doi.org/10.1007/3-540-37642-9_190

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28441-3

  • Online ISBN: 978-3-540-37642-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics

Navigation