Physical Optimization

  • Chapter
Image-Guided IMRT

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bortfeld T (1999) Optimized planning using physical objectives and constraints. Semin Radiat Oncol 9:20–34

    PubMed  CAS  Google Scholar 

  2. Bortfeld T (2003) Physical optimization. In: Palta JR, Mackie TR (eds), Intensity modulated radiation therapy — the state of the art, Medical Physics Monograph No. 29, pp 51–75

    Google Scholar 

  3. Webb S (2001) Intensity modulated radiation therapy. Bristol (IOP) Publishing

    Google Scholar 

  4. Webb S (2003) The physical basis of IMRT and inverse planning. Br J Radiol 76:678–689

    Article  PubMed  CAS  Google Scholar 

  5. Romeijn HE, Dempsey JF, Li JG (2004) A unifying framework for multi-criteria fluence map optimization models. Phys Med Biol 49:1991–2013

    Article  PubMed  Google Scholar 

  6. Lahanas M, Schreibmann E, Baltas D (2003) Multiobjective inverse planning for intensity modulated radiotherapy with constraint-free gradient-based optimization algorithms. Phys Med Biol 48:2843–2871

    Article  PubMed  Google Scholar 

  7. Küfer KH, Hammacher HW, Bortfeld T (2000) A multicriteria optimization approach for inverse radiotherapy planning. In: Schlegel W, Bortfeld T (eds), XIII International Conference on the Use of Computers in Radiation Therapy. (XIII ICCR). Springer, Berlin Heidelberg New York

    Google Scholar 

  8. Ling CC, Humm J, Larson S, Amols H, Fuks Z, Leibel S, Koutcher JA (2000) Towards multidimensional radiotherapy (MD-CRT): biological imaging andbiological conformality. Int J Radiat Oncol Biol Phys 47:551–560

    Article  PubMed  CAS  Google Scholar 

  9. Niemierko A (1997) Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys 24:103–110

    Article  PubMed  CAS  Google Scholar 

  10. Thieke C (2003) Multicriteria optimization in inverse radiotherapy planning. University of Heidelberg

    Google Scholar 

  11. Brahme A, Roos JE, Lax I (1982) Solution of an integral equation encountered in rotation therapy, Phys Med Biol 7:1221–1229

    Article  Google Scholar 

  12. Fraass BA, Kessler ML, McShan DL, Marsh LH, Watson BA, Dusseau WJ, Eisbruch A, Sandler HM, Lichter AS (1999) Optimization and clinical use of multisegment intensity-modulated radiation therapy for high-dose conformal therapy. Semin Radiat Oncol 9:60–77

    PubMed  CAS  Google Scholar 

  13. Oelfke U, Bortfeld T (2001) Inverse planning for photon and proton beams. Med Dosim Summer 26:113–124

    Article  CAS  Google Scholar 

  14. Kubo HD, Wilder RB, Pappas CT (1999) Impact of collimator leaf width on stereotactic radiosurgery and 3D conformal radiotherapy treatment plans. Int J Radiat Oncol Biol Phys 44:937–945

    Article  PubMed  CAS  Google Scholar 

  15. Siebers JV, Lauterbach M, Keall PJ, Mohan R (2002) Incorporating multi-leaf collimator leaf sequencing into iterative IMRT optimization. Med Phys 29:952–959

    Article  PubMed  Google Scholar 

  16. Alber M, Nüsslin F (2001) Optimization of intensity modulated radiotherapy under constraints for static and dynamic MLC delivery. Phys Med Biol 46:3229–3239

    Article  PubMed  CAS  Google Scholar 

  17. Litzenberg DW, Moran JM, Fraass BA (2002) Incorporation of realistic delivery limitations into dynamic MLC treatment delivery. Med Phys 29:810–820

    Article  PubMed  Google Scholar 

  18. Langer M, Brown R, Urie M, Leong J, Stracher M, Shapiro J (1990) Large scale optimization of beam weights under dose-volume restrictions. Int J Radiat Oncol Biol Phys 18:887–893

    PubMed  CAS  Google Scholar 

  19. Bortfeld T, Stein J, Preiser K (1997) Clinically relevant intensity modulation optimization using physical criteria. In: Leavitt DD, Starkschall G (eds) XII International Conference on the Use of Computers in Radiation Therapy (XII ICCR), Salt Lake City, USA. Medical Physics Publishing, Madison, WI, pp 1–4

    Google Scholar 

  20. Spirou SV, Chui CS (1998) A gradient inverse planning algorithm with dose-volume constraints. Med Phys 25:321–333

    Article  PubMed  CAS  Google Scholar 

  21. Deasy JO (1997) Multiple local minima in radiotherapy optimization problems with dose-volume constraints. Med Phys 24:1157–1161

    Article  PubMed  CAS  Google Scholar 

  22. Llacer J, Deasy JO, Bortfeld TR, Solberg TD, Promberger C (2003) Absence of multiple local minima effects in intensity modulated optimization with dose-volume constraints. Phys Med Biol 48:183–210

    Article  PubMed  Google Scholar 

  23. Wu Q, Mohan R (2002) Multiple local minima in IMRT optimization based on dose-volume criteria. Med Phys 29:1514–1527

    Article  PubMed  Google Scholar 

  24. Cotrutz C, ** with regionally variable penalty scheme. Med Phys 30:544–551

    Article  PubMed  Google Scholar 

  25. Alber M, Meedt G, Nüsslin F, Reemtsen R (2002) On the degeneracy of the IMRT optimization problem. Med Phys 29:2584–2589

    Article  PubMed  CAS  Google Scholar 

  26. Llacer J, Agazaryan N, Solberg TD, Promberger C (2004) Degeneracy, frequency response and filtering in IMRT optimization. Phys Med Biol 49:2853–2880

    Article  PubMed  Google Scholar 

  27. Webb S, Convery DJ, Evans PM (1998) Inverse planning with constraints to generate smoothed intensity-modulated beams. Phys Med Biol 43:2785–2794

    Article  PubMed  CAS  Google Scholar 

  28. Alber M, Nüsslin F (2000) Intensity modulated photon beams subject to a minimal surface smoothing constraint. Phys Med Biol 45:N49–52

    Article  PubMed  CAS  Google Scholar 

  29. Keller-Reichenbecher MA, Bortfeld T, Levegrun S, Stein J, Preiser K, Schlegel W (1999) Intensity modulation with the “step and shoot” technique using a commercial MLC: a planning study. Multileaf collimator. Int J Radiat Oncol Biol Phys 45:1315–1324

    Article  PubMed  CAS  Google Scholar 

  30. Holmes T, Mackie TR (1994) A comparison of three inverse treatment planning algorithms. Phys Med Biol 39:91–106

    Article  PubMed  CAS  Google Scholar 

  31. Censor Y (2003) Mathematical optimization for the inverse problem of intensity modulated radiation therapy. In: Palta JR, Mackie TR (eds) Intensity-modulated radiation therapy: the stateof the art. American Association of Physicists in Medicine. Medical Physics Publishing, Madison, pp 25–49

    Google Scholar 

  32. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Numerical recipes in C: the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  33. Zhang X, Liu H, Wang X, Dong L, Wu Q, Mohan R (2004) Speed and convergence properties of gradient algorithms for optimization of IMRT. Med Phys 31:1141–1152

    Article  PubMed  Google Scholar 

  34. Webb S (1989) Optimisation of conformal radiotherapy dose distributions by simulated annealing. Phys Med Biol 34:1349–1370

    Article  PubMed  CAS  Google Scholar 

  35. Webb S (1997) The physics of conformal radiotherapy: advances in technology. Institute of Physics Publishing, Bristol Philadelphia

    Google Scholar 

  36. Kirkpatrick CD, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    PubMed  Google Scholar 

  37. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distribution and the Bayesian restoration in images. IEEE Trans Patt Anal Mac Int 6:721–741

    Article  Google Scholar 

  38. Carol MP, Nash RV, Campbell RC, Huber R, Sternick E (1997) The development of a clinically intuitive approach to inverse treatment planning: partial volume prescription and area cost function. In: Leavitt DD, Starkschall G (eds) Proceedings of the XIIth International Conference on the Use of Computers in Radiation Therapy. Medical Physics Publishing, Madison, pp 317–319

    Google Scholar 

  39. Shepard DM, Earl MA, Li XA, Naqvi S, Yu C (2002) Direct aperture optimization: a turnkey solution for step-and-shoot IMRT. Med Phys 29:1007–1018

    Article  PubMed  CAS  Google Scholar 

  40. Szu H, Hartley R (1987) Fast simulated annealing. Phys Lett A 122:157–162

    Article  Google Scholar 

  41. Cotrutz C, **ng L (2003) Segment-based dose optimization using a genetic algorithm. Phys Med Biol 48:2987–2998

    Article  PubMed  Google Scholar 

  42. Li Y, Yao J, Yao D (2003) Genetic algorithm based deliverable segments optimization for static intensity-modulated radiotherapy. Phys Med Biol 48:3353–3374

    Article  PubMed  Google Scholar 

  43. Shepard DM, Ferris MC, Olivera GH, Mackie TR (1999) Optimizing the delivery of radiation therapy to cancer patients. SIAM Rev 41:721–744

    Article  Google Scholar 

  44. Sternick ES, Bleier AR, Carol MP, Curran BH, Holmes TW, Kania AA, Lalonde R, Larson LS (1997) Intensity modulated radiation therapy: what photon energy is best? In: Leavitt DD, Starkschall G (eds) Proceedings of the XIIth International Conference on the Use of Computers in Radiation Therapy. Medical Physics Publishing, Madison, pp 418–419

    Google Scholar 

  45. Bortfeld T, Schlegel W (1993) Optimization of beam orientations in radiation therapy: some theoretical considerations. Phys Med Biol 38:291–304

    Article  PubMed  CAS  Google Scholar 

  46. Stein J, Mohan R, Wang XH, Bortfeld T, Wu Q, Preiser K, Ling CC, Schlegel W (1997) Number and orientations of beams in intensity-modulated radiation treatments. Med Phys 24:149–160

    Article  PubMed  CAS  Google Scholar 

  47. Pugachev A, Li JG, Boyer AL, Hancock SL, Le QT, Donaldson SS, **ng L (2001) Role of beam orientation optimization in intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 50:551–560

    Article  PubMed  CAS  Google Scholar 

  48. Söderström S, Brahme A (1995) Which is the most suitable number of photon beamportals in coplanar radiation therapy? Int J Radiat Oncol Biol Phys 33:151–159

    Article  PubMed  Google Scholar 

  49. Das S, Cullip T, Tracton G, Chang S, Marks L, Anscher M, Rosenman J (2003) Beam orientation selection for intensity-modulated radiation therapy based on target equivalent uniform dose maximization. Int J Radiat Oncol Biol Phys 55:215–224

    Article  PubMed  Google Scholar 

  50. Rowbottom CG, Nutting CM, Webb S (2001) Beam-orientation optimization of intensity-modulated radiotherapy: clinical application to parotid gland tumours. Radiother Oncol 59:169–177

    Article  PubMed  CAS  Google Scholar 

  51. Hou Q, Wang J, Chen Y, Galvin JM (2003) Beam orientation optimization for IMRT by a hybrid method of the genetic algorithm and the simulated dynamics. Med Phys 30:2360–2367

    Article  PubMed  Google Scholar 

  52. Webb S (1995) The problem of isotropically orienting N converging vectors in space with application to radiotherapy planning. Phys Med Biol 40:945–954

    Article  PubMed  CAS  Google Scholar 

  53. Pugachev A, **ng L (2001) Pseudo beam’s-eye-view as applied to beam orientation selection in intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 51:1361–1370

    Article  PubMed  CAS  Google Scholar 

  54. Shepard DM, Earl MA, Yu CX, **ao Y (2003) Aperture-based inverse planning. In: Palta JR, Mackie TR (eds) Intensity-modulated radiation therapy: the state of the art. Medical Physics Publishing, Madison, pp 115–137

    Google Scholar 

  55. De Neve W, De Wagter C, De Jaeger K, Thienpont M, Colle C, Derycke S, Schelfhout J (1996) Planning and delivering high doses to targets surrounding the spinal cord at the lower neck and upper mediastinal levels: static beam-segmentation technique executed with a multileaf collimator. Radiother Oncol 40:271–279

    Article  PubMed  Google Scholar 

  56. De Gersem W, Claus F, De Wagter C, De Neve W (2001) An anatomy-based beam segmentation tool for intensity-modulated radiation therapy and its application to head-and-neck cancer. Int J Radiat Oncol Biol Phys 51:849–859

    Article  PubMed  Google Scholar 

  57. **ao Y, Galvin J, Hossain M, Valicenti R (2000) An optimized forward-planning technique for intensity modulated radiation therapy. Med Phys 27:2093–2099

    Article  PubMed  CAS  Google Scholar 

  58. Bednarz G, Michalski D, Houser C, Huq MS, **ao Y, Anne PR, Galvin JM (2002) The use of mixed-integer programming for inverse treatment planning with pre-defined field segments. Phys Med Biol 47:2235–2245

    Article  PubMed  Google Scholar 

  59. De Gersem W, Claus F, de Wagter C, Van Duyse B, De Neve W (2001) Leaf position optimization for step-and-shoot IMRT Int J Radiat Oncol Biol Phys 51:1371–1388

    Article  PubMed  Google Scholar 

  60. Kestin LL, Sharpe MB, Frazier RC, Vicini FA, Yan D, Matter RC, Martinez AA, Wong JW (2000) Intensity modulation to improve dose uniformity with tangential breast radiotherapy:initial clinical experience. Int J Radiat Oncol Biol Phys 48:1559–1568

    Article  PubMed  CAS  Google Scholar 

  61. Earl MA, Shepard DM, Naqvi S, Li XA, Yu CX (2003) Inverse planning for intensity-modulated arc therapy using direct aperture optimization. Phys Med Biol 48:1075–1089

    Article  PubMed  CAS  Google Scholar 

  62. Fiveash JB, Murshed H, Duan J, Hyatt M, Caranto J, Bonner JA, Popple RA (2002) Effect of multileaf collimator leaf width on physical dose distributions in the treatment of CNS and head and neck neoplasms with intensity modulated radiation therapy. Med Phys 29:1116–1119

    Article  PubMed  CAS  Google Scholar 

  63. Bortfeld T, Oelfke U, Nill S (2000) What is the optimum leaf width of a multileaf collimator? Med Phys 27:2494–2502

    Article  PubMed  CAS  Google Scholar 

  64. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley

    Google Scholar 

  65. Falkenauer E (1998) Genetic algorithms and grou** problems. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oelfke, U., Nill, S., Wilkens, J.J. (2006). Physical Optimization. In: Bortfeld, T., Schmidt-Ullrich, R., De Neve, W., Wazer, D.E. (eds) Image-Guided IMRT. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30356-1_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-30356-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20511-1

  • Online ISBN: 978-3-540-30356-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation