• 536 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajika K, Hökfelt T (1973) Ultrastructural identification of catecholamine neurons in the hypothalamic preventricular arcuate nucleus-median eminence complex with special reference to quantitative aspects. Brain Res 57:97–117

    Article  PubMed  Google Scholar 

  • Alajouanine T (1948) Aphasia and artistic realization. Brain 71:229–241

    Google Scholar 

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  PubMed  Google Scholar 

  • Allain H, Gougnard J, Naukirek HC (1991) Selegiline in de novo parkinsonian patients: the French selegiline multicenter trial (FSMP). Acta Neurol Scand 136:73–78

    Google Scholar 

  • Amsterdam JD (2003) A double-blind, placebo-controlled trial of the safety and efficacy of selegiline transdermal system without dietary restrictions in patients with major depressive disorder. J Clin Psychiatry 64:208–214

    PubMed  Google Scholar 

  • Ban TA, Healy D, Shorter E (1998) The rise of psychopharmacology and the story of CINP. Animula Publishing House, Budapest

    Google Scholar 

  • Bartov O (2001) In God's name: genocide and religion in the twentieth century (War and genocide, vol 4). Berghahn Books

    Google Scholar 

  • Beritov IC (1932) As cited in Knoll J (1969) The theory of active reflexes. Hungarian Academy of Sciences, Budapest; Hafner Publishing, New York, p 10

    Google Scholar 

  • Bertler A (1961) Occurrence and localization of catecholamines in human brain. Acta Physiol Scand 51:135–161

    Google Scholar 

  • Birkmayer W, Hornykiewicz O (1962) Der L-Dioxyphenyl-Alanin-Effekt beim Parkinson-Syndrom des Menschen. Arch Psychiat Nervenkrh 203:560–564

    Article  Google Scholar 

  • Birkmayer W, Riederer P, Ambrozi L, Youdim MBH (1977) Implications of combined treatment with “Madopar” and L-deprenil in Parkinson's disease. Lancet 1:439–443

    Article  PubMed  Google Scholar 

  • Birkmayer W, Riederer P, Linauer W, Knoll J (1984) L-Deprenyl plus L-phenylalanine in the treatment of depression. J Neural Transm 59:81–87

    Article  PubMed  Google Scholar 

  • Birkmayer W, Knoll J, Riederer P, Youdim MBH, Hars V, Marton V (1985) Increased life expectancy resulting from addition of L-deprenyl to Madopar treatment in Parkinson's disease: a long-term study. J Neural Transm 64:113–127

    Article  PubMed  Google Scholar 

  • Birks J, Flicker L (2003) Selegiline for Alzheimer's disease. Cochrane Database Syst Rev 1:CE000442

    Google Scholar 

  • Blackwell B (1963) Hypertensive crisis due to monoamine oxidase inhibitors. Lancet ii:849–851

    Article  Google Scholar 

  • Bodkin JA, Amsterdam JD (2002) Transdermal selegiline in major depression: a double-blind, placebo-controlled, parallel-group study in outpatients. Am J Psychiatry 159:1869–1875

    Article  PubMed  Google Scholar 

  • Bookheimer SY, Strojwas MH, Cohen MS, Saunders AM, Pericak-Vance MA, Mazziotta JC, Small GW (2000) Patterns of brain activation in people at risk for Alzheimer's disease. N Engl J Med 343:450–456

    Article  PubMed  Google Scholar 

  • Borowsky B, Adham N, Jones KA, Raddatz R, Artimishyn R, Ogozalek KL, Durkin MM, Lakhlani PP, Bonini JA, Pathirana S, Boyle N, Pu X, Kouranova E, Lichtblau H, Ochoa FY, Branchek TA, Gerald C (2001) Trace amines: Identification of a family of mammalian G protein-coupled receptors. Proc Nat Acad Sci USA 98: 8966–8971

    Article  PubMed  Google Scholar 

  • Borroni B, Archetti S, Agosti C, Akkawi N, Brambilla C, Caimi L, Caltagirone C, Di Luca M, Padovani A (2004) Intronic CYP46 polymorphism along with ApoE genotype in sporadic Alzheimer Disease: from risk factors to disease modulators. Neurobiol Aging 25:747–751

    Article  PubMed  Google Scholar 

  • Boulton AA, Juorio AV, Downer RGH (1988) Trace amines: comparative and clinical neurobiology (Experimental and clinical neuroscience). Humana Press, Totowa, NJ

    Google Scholar 

  • Bunzow JR, Sonders MS, Arttamangkul S, Harrison LM, Zhang G, Quigley DI, Darland T, Suchland KL, Pasumamula S, Kennedy JL, Olson SB, Magenis RE, Amara SG, Grandy DK (2001) Amphetamine, 3,4-methylenedioxy-methamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol Pharmacol 60:1181–1188

    PubMed  Google Scholar 

  • Calas A, Alonso G, Arnauld E, Vincent JD (1974) Demonstration of indolaminergic fibers in the median eminence of the duck, rat and monkey. Nature 250:242–243

    Article  Google Scholar 

  • Calas A, Besson NJ, Cauchy C, Alonso G, Glowinsky J, Cheramy A (1976) Radioautographic study of in vivo incorporation of 3H-monoamines in the cat caudate nucleus:identification of serotoninergic fibers. Brain Res 118:1–13

    Article  PubMed  Google Scholar 

  • Campi N, Todeschini GP, Scarzella L (1990) Selegiline versus L-acetylcarnitine in the treatment of Alzheimer-type dementia. Clin Ther 12:306–314

    PubMed  Google Scholar 

  • Campion D, Dumanchin C, Hannequin D, Dubois B, Belliard S, Puel M et al. (1999) Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet 65:664–670

    Article  PubMed  Google Scholar 

  • Carlsson A (1979) The impact of catecholamine research on medical science and practice. In: Usdin E, Kopin IJ, Barchas J. (eds) Catecholamines: basic and clinical frontiers, vol 1. Pergamon Press, New York, pp 4–19

    Google Scholar 

  • Carrillo MC, Kanai S, Nokubo M, Kitani K (1991) (—)Deprenyl induces activities of both superoxide dismutase and catalase but not of glutathion peroxidase in the striatum of young male rats. Life Sci 48:517–521

    Article  PubMed  Google Scholar 

  • Carrillo MC, Kanai S, Nokubo M, Ivy GO, Sato Y, Kitani K (1992) (—)Deprenyl increases activities of superoxide dismutase and catalase in striatum but not in hippocampus: the sex and age-related differences in the optimal dose in the rat. Exp Neurol 116:286–294

    Article  PubMed  Google Scholar 

  • Chan-Palay V (1975) Fine structure of labelled axons in the cerebellar cortex and nuclei of rodents and primates after intraventicular infusions with tritiated serotonin. Anat Embryol 148:235–265

    Article  PubMed  Google Scholar 

  • Cohen GP, Pasik B, Cohen A, Leist C, Mitileneou MD, Yahr M (1984) Pargyline and (—)deprenyl prevent the neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in monkeys. Eur J Pharmacol 106:209–210

    Article  PubMed  Google Scholar 

  • Connick JH, Hanlon G, Roberts J, France L, Fox PK, Nicholson CD (1992) Multiple sigma binding sites in guinea-pig and rat brain membranes: G-protein interactions. Br J Pharm 107:726–731

    Google Scholar 

  • Crane GE (1956) Psychiatric side effects of iproniazid. Am J Psychiatr 112:494–499

    PubMed  Google Scholar 

  • Dabrowsky M (1995) Kandinsky compositions. The Museum of Modern Art, New York

    Google Scholar 

  • Dalló J, Lekka N, Knoll J (1986a) Age dependent decrease of copulatory activity and its correction by (—)deprenyl in male rats. In: Borsy J, Kerecsen L, György L (eds) Dopamine, ageing and diseases. Pergamon Press, Akadémiai Kiadó, Budapest, pp 35–38

    Google Scholar 

  • Dalló J, Lekka N, Knoll J (1986b) The ejaculatory behavior of sexually sluggish male rats treated with (—)deprenyl, apomorphine, bromocriptine and amphetemine. Pol J Pharmacol Pharm 38: 251–255

    PubMed  Google Scholar 

  • Davis BA, Boulton AA (1994) The trace amines and their acidic metabolites in depression an overview. Prog Neuro-Psychopharmacol Biol Psychiatry 18:17–45

    Article  Google Scholar 

  • Descarries L, Léger L (1978) Serotonin nerve terminals in the locus coeruleus of the adult rat. 3. In: Garattini S, Pujol JF, Samanin R (eds) Interactions between putative neurotransmitters in the brain. Raven Press, New York, pp 355–367

    Google Scholar 

  • Descarries L, Watkins KC, Lapierre Y (1977) Noradrenergic axon terminals in the cerebral cortex of rat. Topmetric ultrastructural analysis. Brain Res 133:197–222

    Article  PubMed  Google Scholar 

  • Dobbs SM, Dobbs RJ, Charlett A (1996) Multi-centre trials: U-turns by bandwagons and the patient left by the wayside. Br J Clin Pharmacol 42:143–145

    Article  PubMed  Google Scholar 

  • Eckert B, Gottfries CG, Knorring L, Oreland L, Wilbert A, Winblad B (1980) Brain and platelet monoamine oxidase in schizoprenics and cycloid psychotics. Prog Neuropsychopharmacol 4:57–68

    PubMed  Google Scholar 

  • Elsworth JD, Glover V, Reynolds GP, Sandler M, Lees AJ, Phuapradit P, Shaw KM, Stern GM, Kumar P (1978) Deprenyl administration in man; a selective monoamine oxidase B inhibitor without the “cheese effect”. Psychopharmacology 57:33–38

    Article  PubMed  Google Scholar 

  • Etminan M, Gill S, Samii A (2003) Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer's disease: systematic review and meta-analysis of observational studies. Brit Med J 327:128–131

    PubMed  Google Scholar 

  • Falsaperla A, Monici Preti PA, Oliani C (1990) Selegiline versus oxiracetam in patients with Alzheimer-type dementia. Clin Ther 12:376–384

    PubMed  Google Scholar 

  • Finnegan KT, Skratt JJ, Irvin I, DeLanney LE, Langston JW (1990) Protection against DSP-4 induced neurotoxicity by deprenyl is not related to its inhibition of MAO-B. Eur J Pharmacol 184:119–126

    Article  PubMed  Google Scholar 

  • Fischer E, Heller B, Miró AH (1968) β-Phenylethylamine in human urine. Arzneimittelf 18:1486

    Google Scholar 

  • Fischer E, Spatz H, Heller B, Reggiani H (1972) Phenethylamine content of human urine and rat brain, its alterations in pathological conditions and after drug administration. Experientia 15:307–308

    Article  Google Scholar 

  • Fowler CJ, Oreland L, Marcusson J, Winblad B (1980) Titration of human brain monamine oxidase-A and-B by clorgyline and L-deprenyl. Naun-Schmied Arch Pharmacol 311:263–272

    Article  Google Scholar 

  • Fowler CJ, Wiberg A, Oreland L, Marcusson J, Windlab B (1980) The effect of age on the activity and molecular properties of human brain monoamine oxidase. J Neural Transm 49:1–20

    Article  PubMed  Google Scholar 

  • Greenshow AJ (1989) Functional interactions of 2-phenylethylamine and of tryptamine with brain catecholamines: implications for psychotherapeutic drug action. Prog Neuro-Psychopharmacol Biol Psychiatry 13:431–443

    Article  Google Scholar 

  • Grundman M (2000) Vitamin E and Alzheimer disease: the basis for additional clinical trials. Am J Clin Nutr 71:630s–636s

    PubMed  Google Scholar 

  • Hamabe W, Fujita R, Yasusa T, Yoneda F, Yoshida A, Ueda H (2000) (—)1-(Benzofuran-2-yl)-2-propylaminopentane shows survival effect on cortical neurons under serum-free condition through sigma receptors. Cell Mol Neurobiol 20:695–702

    Article  PubMed  Google Scholar 

  • Hársing RG, Magyar K, Tekes K, Vizi ES, Knoll J (1979) Inhibition by (—)-deprenyl of dopamine uptake in rat striatum: A possible correlation between dopamine uptake and acetylcholine release inhibition. Pol J Pharmacol Pharm 31:297–307

    PubMed  Google Scholar 

  • Hauger RL, Skolnick P, Paul SM (1982) Specific [3H] beta-phenylethylamine binding sites in rat brain. Eur J Pharmacol 83:147–148

    Article  PubMed  Google Scholar 

  • Healy D (1996) The psychopharmacologists I. Altman, London, Weinham, New York, Tokyo, Melbourne, Madras

    Google Scholar 

  • Healy D (1998) The psychopharmacologists II. Altman, London, Weinham, New York, Tokyo, Melbourne, Madras

    Google Scholar 

  • Healy D (2000) The psychopharmacologists III. Arnold. London, Oxford University Press Inc., New York

    Google Scholar 

  • Helmer C, Joly P, Letenneur L, Commenges D, Dartigues JF (2001) Mortality with dementia: results from a French prospective community-based cohort. Am J Epidemiol 154:642–648

    Article  PubMed  Google Scholar 

  • Hilgard ER (1948) Theories of learning. Appleton Century Crofts, New York

    Google Scholar 

  • Hökfelt T (1968) In vitro studies on central and peripheral monoamine neurons at the ultrastructural level. Z Zellforsch 91:1–74

    Article  PubMed  Google Scholar 

  • Hy LX, Keller DM (2000) Prevalence of AD among whites: a summary by levels of severity. Neurology 55:198–204

    PubMed  Google Scholar 

  • Iacopino V, Peel M (2002) The medical documentation of torture. Greenich Medical Media, London

    Google Scholar 

  • Janssen PA, Leysen JE, Megens AA, Awouters HF (1999) Does phenylethylamine act as an endogenous amphetamine in some patients? Int J Neuropsychopharmacol 2:229–240

    Article  PubMed  Google Scholar 

  • Johnston JP (1968) Some observations upon a new inhibitor of monoamine oxidase in human brain. Biochem Pharmacol 17:1285–1297

    Article  PubMed  Google Scholar 

  • Kaufman S (2001) Modern hatreds: The symbolic politics of ethnic war. Cornell Univ Press

    Google Scholar 

  • Kelemen K, Longo VG, Knoll J, Bovet D (1961) The EEG arousal reaction in rats with extinguishable and non-extinguishable conditioned reflexes. Electroenc Clin Neurophysiol 13:745–751

    Article  Google Scholar 

  • Kitani K, Kanai S, Sato Y, Ohta M, Ivy GO, Carrillo MC (1992) Chronic treatment of (—)deprenyl prolongs the life span of male Fischer 344 rats. Further evidence. Life Sci 52:281–288

    Article  Google Scholar 

  • Kitani K, Minami C, Isobe K, Maehara K, Kanai S, Ivy GO, Carrillo MC (2002) Why (—)deprenyl prolongs survival of experimental animals: Increase of anti-oxidant enzymes in brain and other body tissues as well as mobilization of various humoral factors may lead to systemic anti-aging effects. Mech Aging Dev 123:1087–1100

    Article  PubMed  Google Scholar 

  • Kline NS (1958) Clinical experience with iproniazid (marsilid). J Clin Exp Psychophathol 19:72–81

    Google Scholar 

  • Knoll B (1961) Certain aspects of the formation of temporary connections in comparative experiments on mice and rats. Acta Physiol Hung 20:265–275

    Google Scholar 

  • Knoll B (1968) Comparative physiological and pharmacological analysis of the higher nervous function of mice and rats (in Hungarian). Candidate of Sciences Thesis (Ph.D equivalent). Hungarian Academy of Sciences, Budapest

    Google Scholar 

  • Knoll J (1956) Experimental studies on the higher nervous activity of animals. V. The functional mechanism of the active conditioned reflex. Acta Physiol Hung 10:89–100

    PubMed  Google Scholar 

  • Knoll J (1957) Experimental studies on the higher nervous activity of animals. VI. Further studies on active reflexes. Acta Physiol Hung 12:65–92

    PubMed  Google Scholar 

  • Knoll J (1969) The theory of active reflexes. An analysis of some fundamental mechanisms of higher nervous activity. Hungarian Academy of Sciences, Budapest; Hafner Publishing Company, New York

    Google Scholar 

  • Knoll J (1976) Analysis of the pharmacological effects of selective monoamine oxidase inhibitors. In: Wolstenholme GES, Knight J (eds) Monoamine oxidase and its inhibition. Ciba foundation Symposium 39 (new series), Elsevier, Amsterdam, pp 131–161

    Google Scholar 

  • Knoll J (1978) The possible mechanism of action of (—)deprenyl in Parkinson's disease. J Neural Transm 43:177–198

    Article  PubMed  Google Scholar 

  • Knoll J (1981a) Can the suicide inactivation of MAO by deprenyl explain its pharmacological effects? In: Singer TP, Ondarza N (eds) Molecular basis of drug action. Elsevier, Amsterdam, pp 185–201

    Google Scholar 

  • Knoll J (1981b) The pharmacology of selective MAO inhibitors. In: Youdim, MBH, Paykel, ES (eds) Monoamine oxidase inhibitors: the state of the art. John Wiley and Sons, London, pp 45–61

    Google Scholar 

  • Knoll J (1981c) Further experimental support to the concept that (—)deprenyl facilitates dopaminergic neurotransmission in the brain. In: Kamijo K, Usdin E, Nagatsu T (eds) Monoamine oxidase. basic and clinical frontiers. Excerpta Medica, Amsterdam, pp 230–240

    Google Scholar 

  • Knoll J (1982) Selective inhibition of B type monoamine oxidase in the brain: a drug strategy to improve the quality of life in senescence. In: Keverling Buisman JA (ed) Strategy in drug research. Elsevier, Amsterdam, pp 107–135

    Google Scholar 

  • Knoll J (1983) Deprenyl (selegiline). The history of its development and pharmacological action. Acta Neurol Scand Suppl 95:57–80

    PubMed  Google Scholar 

  • Knoll J (1985) The facilitation of dopaminergic activity in the aged brain by (—)deprenyl. A proposal for a strategy to improve the quality of life in senescence. Mech Ageing Dev 30:109–122

    Article  PubMed  Google Scholar 

  • Knoll J (1986a) Striatal dopamine, aging and deprenyl. In: Borsy J, Kerecsen L, György L (eds) Dopamine, ageing and diseases. Pergamon Press, Akadémiai Kiadó (Hungarian Academy of Sciences), Budapest, pp 7–26

    Google Scholar 

  • Knoll J (1986b) The pharmacology of (—)deprenyl. J Neural Transm Suppl 22:75–89

    PubMed  Google Scholar 

  • Knoll J (1986c) Role of B-type monoamine oxidase inhibition in the treatment of Parkinson's disease. An update. In: Shah NS, Donald AG (eds) Movement disorders. Plenum Press, New York, pp 53–81

    Google Scholar 

  • Knoll J (1987) R-(—)Deprenyl (Selegiline, Movergan®) facilitates the activity of the nigrostriatal dopaminergic neuron. J Neural Transm 25:45–66

    Google Scholar 

  • Knoll J (1988) The striatal dopamine dependency of lifespan in male rats. Longevity study with (—)deprenyl. Mech Ageing Dev 46:237–262

    Article  PubMed  Google Scholar 

  • Knoll J (1989) The pharmacology of selegiline /(—)deprenyl. Acta Neurol Scand 126:83–91

    Google Scholar 

  • Knoll J (1990) Nigrostriatal dopaminergic activity, deprenyl treatment, and longevity. Adv Neurol 53:425–429

    PubMed  Google Scholar 

  • Knoll J (1992a) Pharmacological basis of the therapeutic effect of (—)deprenyl in age-related neurological diseases. Med Res Rev 12:505–524

    PubMed  Google Scholar 

  • Knoll J (1992b) (—)Deprenyl-medication: a strategy to modulate the age-related decline of the striatal dopaminergic system. JAGS 40:839–847

    Google Scholar 

  • Knoll J (1993a) The pharmacological basis of the beneficial effect of (—)deprenyl (selegiline) in Parkinson's and Alzheimer's diseases. J Neural Transm Suppl 40:69–91

    PubMed  Google Scholar 

  • Knoll J (1993b) The pharmacological basis of the therapeutic of (—)-deprenyl in age-related neurological diseases. In: Szelenyi I (ed) Inhibitors of monoamine oxidase B. Pharmacology and clinical use in neurodegenerative disorders. Birhkäuser Verlag, Basel, pp 145–168

    Google Scholar 

  • Knoll J (1993c) Some clinical implication of MAO-B inhibition. In: Yasuhara H, Parvez SH, Oguchi K, Sandler M, Nagatsu T (eds) Monoamine oxidase: basic and clinical aspects. VSP Utrecht, The Netherlands, pp 197–217

    Google Scholar 

  • Knoll J (1994) Memories of my 45 years in research. Pharmacol Toxicol 75:65–72

    PubMed  Google Scholar 

  • Knoll J (1995) Rationale for (—)deprenyl (selegiline) medication in Parkinson's disease and in prevention of age-related nigral changes. Biomed Pharmacother 49:187–195

    Article  PubMed  Google Scholar 

  • Knoll J (1996) (—)Deprenyl (selegiline) in Parkinson's disease: a pharmacologist's comment. Biomed Pharmacother 50:315–317

    Article  PubMed  Google Scholar 

  • Knoll J (1998) (—)Deprenyl (selegiline) a catecholaminergic activity enhancer (CAE) substance acting in the brain. Pharmacol Toxicol 82:57–66

    PubMed  Google Scholar 

  • Knoll J (2001) Antiaging compounds: (—)Deprenyl (Selegiline) and (—)1-(benzofuran-2-yl)-2-propylaminopentane, (—)BPAP, a selective highly potent enhancer of the impulse propagation mediated release of catecholamines and serotonin in the brain. CNS Drug Rev 7:317–345

    PubMed  Google Scholar 

  • Knoll J (2003) Enhancer regulation/endogenous and synthetic enhancer compounds: A neurochemical concept of the innate and acquired drives. Neurochem Res 28:1187–1209

    Article  PubMed  Google Scholar 

  • Knoll J, Magyar K (1972) Some puzzling effects of monoamine oxidase inhibitors. Adv. Bioch Psychopharmacol 5:393–408

    Google Scholar 

  • Knoll J, Miklya I (1994) Multiple, small dose administration of (—)deprenyl enhances catecholaminergic activity and diminishes serotoninergic activity in the brain and these effects are unrelated to MAO-B inhibition. Arch Int Pharmacodyn Thér 328:1–15

    PubMed  Google Scholar 

  • Knoll J, Miklya I (1995) Enhanced catecholaminergic and serotoninergic activity in rat brain from weaning to sexual maturity. Rationale for prophylactic (—)deprenyl (selegiline) medication. Life Sci 56:611–620

    Article  PubMed  Google Scholar 

  • Knoll J, Kelemen K, Knoll B (1955a) Experimental studies on the higher nervous activity of animals. 1. A method for the elaboration of a non-extinguishable conditioned reflex in the rat. Acta Physiol Hung 8:327–345

    Google Scholar 

  • Knoll J, Kelemen K, Knoll B (1955b) Experimental studies on the higher nervous activity of animals. 2. Differences in the state of function of the cells constituting the cortical representation of the unconditioned reflex in extinguishable and non-extinguishable conditioned reflexes. Acta Physiol Hung 8:347–367

    Google Scholar 

  • Knoll J, Kelemen K, Knoll B (1955c) Experimental studies on the higher nervous activity of animals. 3. Experimental studies on the active conditioned reflex. Acta Physiol Hung 8:369–388

    Google Scholar 

  • Knoll J, Kelemen K, Knoll B (1956) Experimental studies on the higher nervous activity of animals. 4. A method for elaborating and studying an active conditioned feeding reflex. Experimental analysis of differences between active conditioned defensive and feeding reflexes. Acta Physiol Hung 9:99–109

    PubMed  Google Scholar 

  • Knoll J, Ecseri Z, Kelemen K, Nievel J, Knoll B (1965) Phenylisopropylmethylpropinylamine (E-250) a new psychic energizer. Arch Int Pharmacodyn Thér. 155:154–164

    PubMed  Google Scholar 

  • Knoll J, Vizi ES, Somogyi G (1968) Phenylisopropylmethylpropinylamine (E-250), a monoamine oxidase inhibitor antagonizing the effects of tyramine. Arzneimittelf 18:109–112

    Google Scholar 

  • Knoll J, Yen TT, Dalló J (1983) Long-lasting, true aphrodisiac effect of (—)deprenyl in sexually sluggish old male rats. Mod Probl Pharmacopsychiatry 19:135–153

    PubMed  Google Scholar 

  • Knoll J, Dalló J, Yen TT (1989) Striatal dopamine, sexual activity and lifespan. Longevity of rats treated with (—)deprenyl. Life Sci 45:525–531

    Article  PubMed  Google Scholar 

  • Knoll J, Knoll B, Török Z, Timár J, Yasar S (1992a) The pharmacology of 1-phenyl-2-propylaminopentane (PPAP), a deprenyl-derived new spectrum psychostimulant. Arch int Pharmacodyn Thér 316:5–29

    PubMed  Google Scholar 

  • Knoll J, Tóth V, Kummert M, Sugár J (1992b) (—)Deprenyl and (—)parafluoro-deprenyl-treatment prevents age-related pigment changes in the substantia nigra. A TV-image analysis of neuromelanin. Mech Ageing Dev 63:157–163

    Article  PubMed  Google Scholar 

  • Knoll J, Yen TT, Miklya I (1994) Sexually low performing male rats dies earlier than their high performing peers and (—)deprenyl treatment eliminates this difference. Life Sci 54:1047–1057

    Article  PubMed  Google Scholar 

  • Knoll J, Miklya I, Knoll B, Markó R, Kelemen K (1996a) (—)Deprenyl and (—)1-phenyl-2-propylaminopentane, [(—)PPAP], act primarily as potent stimulants of action potential-transmitter release coupling in the catecholaminergic neurons. Life Sci 58: 817–827

    Article  PubMed  Google Scholar 

  • Knoll J, Knoll B, Miklya I (1996b) High performing rats are more sensitive toward catecholaminergic activity enhancer (CAE) compounds than their low performing peers. Life Sci 58:945–952

    Article  PubMed  Google Scholar 

  • Knoll J, Miklya I, Knoll B, Markó R, Rácz D (1996c) Phenylethylamine and tyramine are mixed-acting sympathomimetic amines in the brain. Life Sci 58:2101–2114

    Article  PubMed  Google Scholar 

  • Knoll J, Yoneda F, Knoll B, Ohde H, Miklya I (1999) (—)l-(Benzofuran-2-yl)-2-propylaminopentane, [(—)BPAP], a selective enhancer of the impulse propagation mediated release of catecholamines and serotonin in the brain. Br J Pharm 128:1723–1732

    Article  Google Scholar 

  • Knoll J, Miklya I, Knoll B, Dalló J (2000) Sexual hormones terminate in the rat the significantly enhanced catecholaminergic/serotoninergic tone in the brain characteristic to the post-weaning period. Life Sci 67:765–773

    Article  PubMed  Google Scholar 

  • Knoll J, Miklya I, Knoll B (2002a) Stimulation of the catecholaminergic and serotoninergic neurons in the rat brain by R-(—)-1-(benzofuran-2-yl)-2-propylaminopentane, (—)-BPAP. Life Sci 71:2137–2144

    Article  PubMed  Google Scholar 

  • Knoll J, Miklya I, Knoll B, Yasusa T, Shimazu S, Yoneda F (2002b) 1-(Benzofuran-2-yl)-2-(3,3,3-trifluoropropyl)aminopentane HCl, 3-F-BPAP, antagonizes the enhancer effect of (—)-BPAP in the shuttle box and leaves the effect of (—)-deprenyl unchanged. Life Sci 71:1975–1984

    Article  PubMed  Google Scholar 

  • Koffka K (1935) Principles of gestalt psychology. Harcourt, Brace, New York

    Google Scholar 

  • Köhler W (1947) Gestalt psychology. Liveright, New York

    Google Scholar 

  • Kuhn R (1957) Über die Behandlung depressiver Zustände mit einem Imonodibenzilderivat. Schweitz Med Wschr 36:1135–1139

    Google Scholar 

  • Kuhn W, Muller T (1996) The clinical potential of deprenyl in neurological and psychiatric disorders. J Neural Transm Suppl 48:85–93

    PubMed  Google Scholar 

  • Larsen JP, Boas J, Erdal JE (1999) Does selegiline modify the progression of early Parkinson's disease? Results from a five-year study. The Norwegian-Danish Study Group. Eur J Neurol 6:539–547

    Article  PubMed  Google Scholar 

  • Lees AJ (1991) Selegiline hydrochloride and cognition. Acta Neurol Scand Suppl 136:91–94

    PubMed  Google Scholar 

  • Lees AJ (1995) Comparison of therapeutic effects and mortality data of levodopa and levodopa combined with selegiline in patients with early, mild Parkinson's disease. Br Med J 311:1602–1607

    Google Scholar 

  • Libet B (1973) Electrical stimulation of cortex in human subjects, and conscious memory aspects. In: Iggo A (ed) Handbook of sensory physiology, vol 2. Springer-Verlag, Berlin, Heidelberg, New York, pp 743–790

    Google Scholar 

  • Levene M, Roberts P (eds) (1999) Massacre in history. Berghahn Books, New York

    Google Scholar 

  • Lockhart BP, Lestage PJ (2003) Cognition enhancing or neuroprotective compounds for the treatment of cognitive disorders: why? when? which? Exp Gerontol 38:119–128

    Article  PubMed  Google Scholar 

  • Lorente de No R (1935) Electrical excitability of motoneurones. J Cell Comp Physiol 7:46–71

    Google Scholar 

  • Mann JJ, Gershon S (1980) A selective monoamine oxidase-B inhibitor in endogenous depression. Life Sci 26:877–882

    Article  PubMed  Google Scholar 

  • Mantle TJ, Garrett NJ, Tipton KF (1976) The development of monoamine oxidase in rat liver and brain. FEBS Lett 64:227–230

    Article  PubMed  Google Scholar 

  • Martin C (1977) Sexual activity in the aging male. In: Money J, Musaph H (eds) Handbook of sexology. Elsevier, Amsterdam, pp 813–824

    Google Scholar 

  • Martini E, Pataky I, Szilágyi K, Venter V (1987) Brief information on an early phase-II study with (—)deprenyl in demented patients. Pharmacopsychiatry 20:256–257

    PubMed  Google Scholar 

  • Maruo J, Yoshida A, Shimohira I, Matsuno K, Mita S, Ueda H (2000) Binding of [35S] GTPγS stimulated by (+)pentazocine, sigma receptor agonist, is abundant in the guinea pig spleen. Life Sci 67:599–603

    Article  PubMed  Google Scholar 

  • McGeer EG, McGeer PL, Wada JK (1971) Distribution of tyrosine hydroxylase in human and animal brain. J Neurochem 18:1647–1658

    PubMed  Google Scholar 

  • McGrath PJ, Stewart JW, Harrison W, Wagner S, Nunes EN, Quitkin FM (1989) A placebo-controlled trial of L-deprenyl in atypical depression. Pschopharmacol Bull 25:63–67

    Google Scholar 

  • Mendlewicz J, Youdim MB (1983) L-Deprenil, a selective monoamine oxidase type B inhibitor, in the treatment of depression: a double blind evaluation. Br J Psychiatry 142:508–511

    PubMed  Google Scholar 

  • Miklya I, Knoll J (2003) Analysis of the effect of (—)-BPAP, a selective enhancer of the impulse propagation mediated release of catecholamines and serotonin in the brain. Life Sci 72:2915–2921

    Article  PubMed  Google Scholar 

  • Miklya I, Knoll B, Knoll J (2003a) A pharmacological analysis elucidating why, in contrast to (—)-deprenyl (selegiline) α-tocopherol was ineffective in the DATATOP study. Life Sci 72:2641–2648

    Article  PubMed  Google Scholar 

  • Miklya I, Knoll B, Knoll J (2003b) An HPLC tracing of the enhancer regulation in selected discrete brain areas of food deprived rats. Life Sci 72:2923–2930

    Article  PubMed  Google Scholar 

  • Milgram MW, Racine RJ, Nellis P, Mendoca A, Ivy GO (1990) Maintenance on L-(—)deprenyl prolongs life in aged male rats. Life Sci 47:415–420

    Article  PubMed  Google Scholar 

  • Mink JW, Thach WT (1993) Basal ganglia intrinsic circuits and their role in behavior. Curr Opinion in Neurobiol 3:950–957

    Article  Google Scholar 

  • Miyoshi K (2001) Parkinson's disease. Nippon Rinsho 59:1570–1573

    PubMed  Google Scholar 

  • Monteverde A, Gnemmi P, Rossi F, Monteverde A, Finali GC (1990) Selegiline in the treatment of mild to moderate Alzheimer-type dementia. Clin Ther 12:315–322

    PubMed  Google Scholar 

  • Morishima-Kawashima M, Iharra Y (2002) Alzheimer's disease: β-amyloid protein and tau. J Neurosci Res 70:392–401

    Article  PubMed  Google Scholar 

  • Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroenceph Clin Neurophysiol 1:455–473

    Google Scholar 

  • Moss FA (1924) Study of animal drives. J Exp Psychol 7:165–185

    Google Scholar 

  • Myttyla VV, Sotaniemi KA, Vourinen JA, Heinonen EH (1992) Selegiline as initial treatment in de novo parkinsonian patiens. Neurology 42:339–343

    PubMed  Google Scholar 

  • Nakajima T, Kakimoto Y, Sano I (1964) Formation of β-phenylethylamine in mammalian tissue and its effect on motor activity. J Pharm 143:319–325

    Google Scholar 

  • Neve RL, Robakis NK (1998) Alzheimer's disease: a re-examination of the amyloid hypothesis. Trends in Neurosci 21:15–19

    Article  Google Scholar 

  • Nguyen TV, Juorio AV (1989) Binding sites for brain trace amines. Cell Mol Neurobiol 9:297–311

    Article  PubMed  Google Scholar 

  • Nguyen TV, Paterson IA, Juorio AV, Greenshow AJ, Boulton AA (1989) Tryptamine receptors: neurochemical and electrophysiological evidence for postsynaptic and functional binding sites. Brain Res 476:85–93

    Article  PubMed  Google Scholar 

  • Nies A, Robinson DS, Davis JM, Ravaris CL (1973) Changes in monoamine oxidase with aging, In: Eisdorfer C, Fann WE (eds) Psychopharmacology of aging (Advances in behavioral biology). Plenum Press, New York, pp 41–54

    Google Scholar 

  • Nussbaum RL, Ellis CE (2003) Alzheimer's disease and Parkinson's disease. N Engl J Med 348:1356–1364

    Article  PubMed  Google Scholar 

  • Ohta K, Ohta M, Mizuta I, Fu**ami A, Shimazu S, Sato N, Yoneda F, Hayashi K, Kuno S (2002) The novel catecholaminergic and serotonergic activity enhancer R-(—)-1-(benzofuran-2-yl)-2-propylaminopentane up-regulates neurotrophic factor synthesis in mouse astrocytes. Neurosci Lett 328: 205–208

    Article  PubMed  Google Scholar 

  • Oka T, Yasusa T, Ando T, Watanabe M, Yoneda F, Ishida T, Knoll J (2001) Enantioselective synthesis and absolute configuration of (—)1-(benzofuran-2-yl)-2-propylaminopentane, (—)-BPAP, a highly potent and selective catecholaminergic activity enhancer. Bioorg Med Chem 9:1213–1219

    Article  PubMed  Google Scholar 

  • Olanow CW, Godbold JH, Koller W (1996) Effect of adding selegiline to levodopa in early, mild Parkinson's disease. Patients taking selegiline may have received more levodopa than necessary. Br Med J 312:702–703

    Google Scholar 

  • Parkinson Study Group (1989) Effect of (—)deprenyl on the progression disability in early Parkinson's disease. New Engl J Med 321:1364–1371

    Google Scholar 

  • Parkinson Study Group (1993) Effect to tocopherol and (—)deprenyl on the progression of disability in early Parkinson's disease. New Engl J Med 328: 176–183

    Google Scholar 

  • Parkinson Study Group (1996) Impact of deprenyl and tocopherol treatment of Parkinson's disease in DATATOP patients requiring levodopa. Ann Neurol 39:37–45

    Google Scholar 

  • Pavlov IP(1955) Pawlowsche Mittwochkolloquien. Akademie Verlag, Berlin, p 492

    Google Scholar 

  • Penfield W(1955) The permanent record of the stream of consciousness. Acta Psychologica 11:47–69

    Google Scholar 

  • Phillips PEM, Stuber GD, Heien MLAV, Wightman RM, Carelli RM (2003) Sub-second dopamine release promotes cocaine seeking. Nature 422:614–617

    Article  PubMed  Google Scholar 

  • Ponto LL, Schultz SK (2003) Ginkgo biloba extract: review of CNS effects. Ann Clin Psychiatry 15:109–119

    Article  PubMed  Google Scholar 

  • Popper RK, Eccles JC (1977) The self and its brain. An argument for interactionism. Springer International, Berlin

    Google Scholar 

  • Premont RT, Gainetdinov RR, Caron MG (2001) Following the trace of elusive amines. Proc Natl Acad Sci USA 98:9474–9475

    Article  PubMed  Google Scholar 

  • Quitkin RT, Liebowitz MR, Stewart JW, McGrath PJ, Harrison W, Rabkin JG, Markowitz J, Davis SO (1984) L-Deprenyl in atypical depression. Arch Gen Psychiatry 41:777–781

    PubMed  Google Scholar 

  • Rashid MH, Matsumoto T, Mizuno K, Watanabe M, Sato N, Yoneda F, Ueda H (2001) Nociceptive responses by deprenyl derivative, (—)BPAP through metabotropic sigma receptor. Pharmacol Rev Com 11:335–342

    Google Scholar 

  • Richards JG, Lorez HP, Tranzer JP (1973) Indolealklylamine nerve terminals in cerebral ventricles, identification by electron microscopy and fluorescence histochemistry. Brain Res 57:277–288

    Article  PubMed  Google Scholar 

  • Richter CP (1927) Animal behavior and internal drives. Quart Rev Biol 2: 307–343

    Article  Google Scholar 

  • Riederer P, Wuketich S (1976) Time course of nigrostriatal degeneration in Parkinson's disease. J Neural Transm 38:277–301

    Article  PubMed  Google Scholar 

  • Rinne JO, Röyttä M, Paljärvi L, Rummukainen J, Rinne UK (1991) Selegiline (deprenyl) treatment and death of nigral neurons in Parkinson's disease. Neurology 41:859–861

    PubMed  Google Scholar 

  • Ritter JL, Alexander B (1997) Retrospective study of selegiline-antidepressant drug interactions and a review of the literature. Ann Clin Psychiarty 9:7–13

    Article  Google Scholar 

  • Robinson DS, Davis JM, Nies A, Ravaris CL, Sylwester D (1971) Relation of sex and aging to monoamine oxidase activity of human brain, plasma and platelets. Arch Gen Psychiatry 24:536–539

    PubMed  Google Scholar 

  • Robinson DS, Davis JM, Nies A, Colburne JR, Runney WE, Shaw DM (1972) Aging, monoamines, and monoamine oxidase levels. The Lancet i:290–291

    Article  Google Scholar 

  • Saavedra JM (1974) Enzymatic isotopic assay for and presence of beta-phyenyl-ethylamine in brain. J Neurochem 22:211–216

    PubMed  Google Scholar 

  • Saavedra JM (1989) Catecholamines II. In: Trendelenburg U, Weiner N (eds) Handbook of experimental pharmacology. Springer-Verlag, Berlin Heidelberg New York, pp 181–201

    Google Scholar 

  • Sabelli HC, Mosnaim AD (1974) Phenylethylamine hypothesis of affective behavior. Am J Psychiat 131:695–699

    PubMed  Google Scholar 

  • Sabelli HC, Javaid JI (1995) Phenylethylamine modulation of affect: therapeutic and diagnostic implication. J Neurophsychiatry Clin Neurosci 7:6–14

    Google Scholar 

  • Sabelli HC, Fawcett J, Gusovsky F, Javaid JI, Wynn P, Edwards H, Jeffriess H, Kravitz HJ (1986) Clinical studies on the phenylethylamine hypothesis of affective disorder: urine and blood phenylacetic acid and phenylalanine dietary supplements. Clin Psychiatry 47:66–70

    Google Scholar 

  • Sandler M, Glover V, Ashford A, Stern GM (1978) Absence of “cheese effect” during deprenyl therapy: some recent studies. J Neural Transm 43:209–215

    Article  PubMed  Google Scholar 

  • Sano M, Ernesto C, Klauber MR (1996) Rationale and design of a multicenter study of selegiline and α-tocopherol in the treatment of Alzheimer disease using novel clinical outcomes. Alzheimer Dis Assoc Disord 10:132–140

    PubMed  Google Scholar 

  • Sano M, Ernesto C, Thomas RG, Klauber MR, Schafer K, Grundman M, Woodbury P, Growdon J, Cotman CW, Pfeiffer E, Schneider LS, Thal LJ (1997) A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer's disease. N Engl J Med 336:1216–1222

    Article  PubMed  Google Scholar 

  • Satoi M, Matsuishi T, Yamada S, Yamashita Y, Ohtaki E, Mori K, Kiikonen R, Kato H, Percy AK (2000) Decreased cerebrosbinal fluid levels of beta-phenylethylamine in patients with Rett snydrome. Ann Neurol 47:801–803

    Article  PubMed  Google Scholar 

  • Schumacher M, Weil-Engerer S, Liere P, Robert F, Franklin RJ, Garcia-Segura LM, Lambert JJ, Mayo W, Melcangi RC, Parducz A, Suter U, Carelli C, Baulieu EE, Akwa Y (2003) Steroid hormones and neurosteroids in normal and pathological aging of the nervous system. Prog Neurobiol 71:3–29

    Article  PubMed  Google Scholar 

  • Selkoe DJ (2001) Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    PubMed  Google Scholar 

  • Shih JC (1979) Monoamine oxidase in aging human brain. In: Singer TP, Korff RW, Murphy DL (eds) Monoamine oxidase: structure, function and altered functions. Academic Press, New York, pp 413–421

    Google Scholar 

  • Shimazu S, Miklya I (2004) Pharmacological studies with endogenous enhancer substances: β-phenylethyamine, tryptamine, and their synthetic derivatives. Progr Neuro-Psychopharmacol Biol Psychiatry 28:421–427

    Article  Google Scholar 

  • Shimazu S, Takahata K, Katsuki H, Tsunekawa H, Tanigawa A, Yoneda F, Knoll J, Akaike A (2001) (—)-1-(Benzofuran-2-yl)-2-proplyaminopentane enhances locomotor activity in rats due to its ability to induce dopamine release. Eur J Pharm 421:181–189

    Article  Google Scholar 

  • Shimazu S, Tanigawa A, Sato N, Yoneda F, Hayashi K, Knoll J (2003) Enhancer substances: Selegiline and R-(—)-1-(benzofuran-2-yl)-2-propylaminopentane, [(—)-BPAP] enhance the neurotrophic factor synthesis on cultured mouse astrocytes. Life Sci 72:2785–2792

    Article  PubMed  Google Scholar 

  • Skinner BF (1938) The behavior of organisms. Appleton Century Crofts, New York

    Google Scholar 

  • Stamford JA, Justice JB Jr (1996) Probing brain chemistry. Anal Chem 68:359A–363A

    PubMed  Google Scholar 

  • Standaert DG, Young AB (1996) Treatment of central nervous system degenerative disorders. In: Hardman JG, Limbird LE (eds) Goodman & Gilman's. The pharmacological basis of therapeutics, 9th edn. McGraw-Hill, New York, pp 503–519

    Google Scholar 

  • Strolin Benedetti M, Keane PE (1980) Differential changes in monoamine oxidase A and B activity in the aging brain. J Neurochem 35:1026–1032

    PubMed  Google Scholar 

  • Student AK, Edwards DJ (1977) Subcellular localization of types A and B monoamine oxidase in rat brain. Biochem Pharm 26:2337–2342

    Article  PubMed  Google Scholar 

  • Tanner CM, Goldmann SM (1996) Epidemiology of Parkinson's disease. Neurol Clin 14:317–335

    Article  PubMed  Google Scholar 

  • Tariot PN, Cohen RM, Sunderland T, Newhouse PA, Yount D, Mellow AM (1987) L-(—)Deprenyl in Alzheimer's disease. Arch Gen Psychiatry 44:427–433

    PubMed  Google Scholar 

  • Tennyson V, Heikkila R, Mytilineou C, Coté L, Cohen G (1974) 5-Hydroxydopamine’ tagged’ neuronal boutons in rabbit neostriatum: interrelationship between vesicles and axonal membrane. Brain Res 82:341–348

    Article  PubMed  Google Scholar 

  • Tetrud JW, Langston JW (1989) The effect of (—)deprenyl (selegiline) on the natural history of Parkinson's disease. Science 245:519–522

    PubMed  Google Scholar 

  • Thomas T (2000) Monoamine oxidase-B inhibitors in the treatment of Alzheimer's disease. Neurobiol Aging 21:343–348

    Article  PubMed  Google Scholar 

  • Thorndike EL (1898) Animal intelligence: An experimental study on the associative processes in animals. Psychol Rev 2(8) (monograph suppl)

    Google Scholar 

  • Thorndike EL (1911) Animal intelligence. Macmillan, New York

    Google Scholar 

  • Thorndike EL (1940) Psychology of wants, interests and attitudes. Macmillan, New York

    Google Scholar 

  • Tokuyama S, Hirata K, Yoshida A, Maruo J, Matsuno K, Mita S, Ueda H (1999) Selective coupling of mouse brain metabotropic sigma receptor with recombinant Gi1. Neurosci Lett 268:85–88

    Article  PubMed  Google Scholar 

  • Tolman EC (1932) Purposive behaviour in animals and in man. Appleton Century Crofts, New York

    Google Scholar 

  • Tom T, Cummings JL (1998) Depression in Parkinson's disease. Pharmacological characteristics and treatment. Drugs Aging 12:55–74

    PubMed  Google Scholar 

  • Tóth V, Kummert M, Sugár J, Knoll J (1992) A procedure for measuring neuromelanin in neurocytes by a TV-image analyser. Mech Ageing Dev 63: 215–221

    Article  PubMed  Google Scholar 

  • Tringer L, Haits G, Varga E (1971) The effect of (—)E-250, (—)L-phenyl-isopropylmethyl-propinyl-amine HCl, in depression. In: Leszkovszky G (ed) V. Conferentia Hungarica pro Therapia et Investigatione in Pharmacologia. Akadémiai Kiadó, Budapest, pp 111–114

    Google Scholar 

  • Uchtomsky AA (1945) Cited by Knoll J (1969) The theory of active reflexes. Hungarian Academy of Sciences, Budapest, Hafner Publishing Company, New York, p 75

    Google Scholar 

  • Ueda H, Inoue M (2000) In vivo signal transduction of nociceptive responses by kyotorphin (tyrosis-arginin) through Gαi-and inositol triphosphate-mediated Ca2+ influx. Molec Pharm 57:108–115

    PubMed  Google Scholar 

  • Usdin E, Sandler M (eds) (1976) Trace amines and the brain. Marcel Dekker, New York

    Google Scholar 

  • Varga E (1965) Vorläufiger Bericht über die Wirkung des Präparats E-250 (Phenyl-Isopropyl-Methyl-Propinylamine-Chlorhydrat) In: Dumbovich B (ed) III. Conferentia Hungarica pro Therapia et Investigatione in Pharmacologia. Akadémiai Kiadó (Hungarian Academy of Sciences), Budapest, pp 197–201

    Google Scholar 

  • Varga E, Tringer L (1967) Clinical trial of a new type of promptly acting psychoenergetic agent (phenyl-isopropylmethyl-propinylamine HCl, E-250). Acta Med Acad Sci Hung 23:289–295

    PubMed  Google Scholar 

  • Vizuete ML, Steffen V, Ayala A, Cano J, Machado A (1993) Protective effect of deprenyl against 1-methyl-4-phenylpiridinium neurotoxicity in rat striatum. Neurosci Lett 152:113–116

    Article  PubMed  Google Scholar 

  • Walker SE, Shulman KI, Tailor SA, Gardner D (1996) Tyramine content of previously restricted foods in monoamine oxidase inhibitor diets. J Clin Psychopharmacol 16:383–388

    Article  PubMed  Google Scholar 

  • Wilner J, LeFevre HF, Costa E (1974) Assay by multiple ion detection of phenylethylamine and phenylethanolamine in rat brain. J Neurochem 23: 857–859

    PubMed  Google Scholar 

  • Wu RM, Chiuech CC, Pert A, Murphy DL (1993) Apparent antioxidant effect of l-deprenyl on hydroxyl radical formation and nigral injury elicited by MPP+ in vivo. Eur J Pharmacol 243:241–247

    PubMed  Google Scholar 

  • Yoneda F, Moto T, Sakae M, Ohde H, Knoll B, Miklya I, Knoll J (2001) Structure-activity studies leading to (—)1-(benzofuran-2-yl)-2-propylaminopentane, (—)BPAP, a highly potent, selective enhancer of the impulse propagation mediated release of catecholamines and serotonin in the brain. Bioorg Med Chem 9:1197–1212

    Article  PubMed  Google Scholar 

  • Youdim MB (1980) Monoamine oxidase inhibitors as anti-depressant drugs and as adjunct to L-dopa therapy of Parkinson's disease. J Neural Transm Suppl 16:157–161

    PubMed  Google Scholar 

  • Zeller EA, Barsky J (1952) In vivo inhibition of liver and brain monoamine oxidase by 1-isonicotinyl-2-isopropylhydrazine. Proc Soc Exp Biol Med 81:459–468

    PubMed  Google Scholar 

  • Zeller EA, Barsky J, Fouts JE, Kirchheimer WF, Van Orden LS (1952) Influence of isonicotinic acid hydrazide (INH) and 1-isonicotinic 2-isopropylhydrazide (IIH) on bacterial and mammalian enzymes. Experientia 8:349–350

    Article  Google Scholar 

  • Zesiewicz TA, Gold M, Chari G, Hauser RA (1999) Current issues in depression in Parkinson's disease. Am J Geriat Psychiat 7:110–118

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). Conclusion. In: The Brain and Its Self. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27434-0_7

Download citation

Publish with us

Policies and ethics

Navigation