Assessment of Postoperative Posttreatment Changes: General Considerations

  • Chapter
  • First Online:
Imaging of Primary Tumors of the Osseous Spine

Abstract

This chapter deals with the general principles of posttreatment imaging of tumors of the osseous spine. Prerequisites for post-therapeutic imaging include clinical presentation and familiarity with the tumor histology, surgical technique, previous radio- or chemotherapy, and access to the preoperative imaging. The recommended time interval for local and distant posttreatment imaging depends on the tumor histology.

MRI is the preferred technique for local surveillance and should include conventional MRI, diffusion-weighted imaging, and dynamic contrast-enhanced imaging. In the presence of metal implants, the imaging parameters should be adjusted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ariyaratne S, Jenko N, Iyengar KP et al (2018) Primary osseous malignancies of the spine. Diagnostics 13(10):1801

    Google Scholar 

  • Bancroft LW (2011) Postoperative tumor imaging. Semin Musculoskelet Radiol 15(4):425–438

    PubMed  Google Scholar 

  • Barz M, Aftahy K, Janssen I et al (2021) Spinal manifestation of primary malignant (PLB) and secondary bone lymphoma (SLB). Curr Oncol 28(5):3891–3899

    PubMed  PubMed Central  Google Scholar 

  • Bloem JL, Vriens D, Krol ADG et al (2020) Therapy-related imaging findings in patients with sarcoma. Semin Musculoskelet Radiol 24:676–691

    PubMed  Google Scholar 

  • Charest-Morin R, Fischer CG, Sahgal A et al (2019) Primary Bone tumor of the spine—an evolving field: what a general spine surgeon should know. Global Spine J 9(IS):108S–116S

    PubMed  PubMed Central  Google Scholar 

  • Chaturvedi A (2021a) Pediatric skeletal diffusion-weighted magnetic resonance imaging: Part 1—Technical considerations and optimization strategies. Pediatr Radiol 51:1562–1574

    PubMed  Google Scholar 

  • Chaturvedi A (2021b) Pediatric skeletal diffusion-weighted magnetic resonance imaging: Part 2: Current and emerging applications. Pediatr Radiol 51:1575–1588

    PubMed  Google Scholar 

  • Cho W, Chang UK (2013) Survival and recurrence rate after treatment for primary spinal sarcomas. J Korean Neurosurg 53:228–234

    Google Scholar 

  • Del Grande F, Santini F, Herzka DA et al (2014a) Fat-suppression techniques for 3-T MR imaging of the musculoskeletal system. Radiographics 34(1):217–233

    PubMed  Google Scholar 

  • Del Grande P, Subhawaong T, Weber C et al (2014b) Detection of soft tissue sarcoma recurrence: added value of functional MR imaging techniques at 3.0T. Radiology 271:499–511

    PubMed  Google Scholar 

  • Deskoulidi P, Stavrianos SD, Mastorakos D et al (2023) Anatomical considerations and plastic surgery reconstruction options of sacral chordoma resection. Cureus 15(4):e37965

    PubMed  PubMed Central  Google Scholar 

  • Fayad LM, Jacobs MA, Carrino JA, Bluemke DA (2012) Musculoskeletal tumors: how to use anatomic, functional and metabolic MR techniques. Radiology 265:340–356

    PubMed  PubMed Central  Google Scholar 

  • Franck P, Bernstein JL, Cohen LE et al (2018) Local muscle flaps minimize post-operative wound morbidity in patients with neoplastic disease of the spine. Clin Neurol Neurosurg 171:100–105

    PubMed  Google Scholar 

  • Gao MA, Tan ET, Neri JP et al (2023) Diffusion-weighted MRI of total hip arthroplasty for classification of synovial reactions: a pilot study. Magn Reson Imaging 96:108–115

    PubMed  Google Scholar 

  • Garner HW, Kransdorf MJ (2016) Musculoskeletal sarcoma: update on imaging of the post-treatment patient. Can Assoc Radiol J 67:12–120

    PubMed  Google Scholar 

  • Garner HW, Kransdorf MJ, Bancroft LW et al (2009) Benign and malignant soft-tissue tumors: posttreatment MR imaging. Radiographics 29:119–134

    PubMed  Google Scholar 

  • Garner HW, Kransdorf MJ, Peterson JJ (2011) Posttherapy imaging of musculoskeletal neoplasms. Posttherapy imaging of musculoskeletal neoplasms. Radiol Clin North Am 49(6):1307–1323

    PubMed  Google Scholar 

  • Inarejos Clemente EJ, Navarro OM, Navallas M et al (2022) Multiparametric MRI evaluation of bone sarcomas in children. Insights Imaging 13:33

    PubMed  PubMed Central  Google Scholar 

  • Janu A, Patra A, Kumar M et al (2023) Imaging recommendations for diagnosis, staging and management of bone tumors. Indian J Med Paediatr Oncol 44:257–260

    Google Scholar 

  • Katonis P, Datsis G, Karantanas A et al (2013) Spinal osteosarcoma. Clin Med Insights Oncol 7:199–208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Lee SK, Kim JY, Kim JH (2023) Pitfalls of diffusion-weighted imaging: clinical utility of T2-shine-through and T2-black-out for musculoskeletal diseases. Diagnostics 13(9):1647

    PubMed  PubMed Central  Google Scholar 

  • Lalam R, Bloem JL, Noebauer-Huhmann IM et al (2017) ESSR consensus document for detection, characterization, and referral pathway for tumors and tumorlike lesions of bone. Semin Musculoskelet Radiol 21:630–647

    PubMed  Google Scholar 

  • Lange N, Jorger AK, Ryang YM et al (2022) Primary bone tumors of the spine—proposal for treatment based on a single center experience. Diagnostics 12(9):2264

    PubMed  PubMed Central  Google Scholar 

  • Lecouvet FE, Vekemans MC, Van Den Berghe T et al (2022) Imaging of treatment response and minimal residual disease in multiple myeloma: state of the art WB-MRI and PET/CT. Skeletal Radiol 51(1):59–80

    PubMed  Google Scholar 

  • Legget AR, Berg AR, Hullinger H, Benevenia JB (2022) Diagnosis and treatment of lumbar giant cell tumor of the spine: update on current management strategies. Diagnostics 12(4):857

    Google Scholar 

  • Liu X, Duan Z, Fang S, Wang S (2023) Imaging assessment of the efficacy of chemotherapy in primary malignant bone tumors: recent advances in qualitative and quantitative magnetic resonance imaging and radiomics. J Magn Reson Imaging 59:7–31

    PubMed  Google Scholar 

  • Messina C, Christie D, Zucca E et al (2015) Primary and secondary bone lymphomas. Cancer Treat Rev 41:235–246

    PubMed  Google Scholar 

  • Munoz-Bendix C, Slotty PJ, Ahmadi SA et al (2015) Primary bone tumors of the spine revisited: a 10-year single-center experience of the management and outcome in a neurosurgical department. J Craniovert Junction Spine 16(1):91–104

    Google Scholar 

  • Noebauer-Huhmann IM, Chaudhary SR, Papakonstantinou O et al (2020) Soft tissue sarcoma follow-up imaging: strategies to distinguish post-treatment changes from recurrence. Semin Musculoskelet Radiol 24:627–644

    PubMed  Google Scholar 

  • Oguro S, Okuda S, Sugiura H et al (2018) Giant cell tumor of the bone: change in image features after denosumab administration. Magn Reson Med Sci 17:325–333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papakonstantinou O, Isaac A, Dalili D, Noebauer-Huhmann IM (2019) T2 hypointense tumors and tumor like lesions. Semin Musculoskelet Radiol 23:58–75

    PubMed  Google Scholar 

  • Patel A, James SL, Davies AM, Botchu R (2015) Spinal imaging update: an introduction to techniques for advanced MRI. Bone Joint J 97-B(12):1683–1692

    CAS  PubMed  Google Scholar 

  • Pennington Z, Ahmed AK, Cottrill E et al (2019) Systematic review on the utility of magnetic resonance imaging for operative management and follow-up for primary sarcoma—lessons from extremity sarcomas. Ann Transl Med 7(10):225

    PubMed  PubMed Central  Google Scholar 

  • Shao Y, Wang Z, Shi X, Wang Y (2023) Development and validation of nomograms predicting overall and cancer-specific survival for non-metastatic primary malignant bone tumor of spine patients. Sci Rep 13:3503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stacchiotti S, Gronchi A, Fossati P et al (2017) Best practices for the management of local-regional recurrent chordoma: a position paper by the Chordoma Global Consensus Group. Ann Oncol 28:1230–1242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Subhawong TK, Jacobs MA, Fayad LM (2014) Diffusion-weighted imaging for characterizing musculoskeletal lesions. Radiographics 34(5):1163–1177

    PubMed  Google Scholar 

  • Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    CAS  PubMed  Google Scholar 

  • Van Rijswijk CS, Geirnaerdt MJ, Hogendoorn PC (2004) Soft tissue tumors: value of static and dynamic gadopentetate dimeglumine-enhanced MR imaging in prediction of malignancy. Radiology 233:493–502

    PubMed  Google Scholar 

  • Verstraete K (2009) Assessment of response to chemotherapy and radiotherapy. In: Davies AM, Sundaram M, James SLJ (eds) Imaging of bone tumors and tumor-like lesions. Techniques and applications. Springer, Berlin

    Google Scholar 

  • Verstraete KL, Van der Woude HJ, Hogendoorn PC et al (1996) Dynamic contrast-enhanced MR imaging of musculoskeletal tumors: basic principles and clinical applications. J Magn Reson Imaging 6:311–321

    CAS  PubMed  Google Scholar 

  • Vilanova JC, Baleato-Gonzalez S, Romero M et al (2016) Assessment of musculoskeletal malignancies with functional MR imaging. Magn Reson Imaging Clin N Am 24:239–259

    PubMed  Google Scholar 

  • Yamazaki T, McLoughlin GS, Patel S et al (2009) Feasibility and safety of en bloc resection for primary spine tumors: a systematic review by the Spine Oncology Group. Spine (Phila Pa 1976) 34(22 Suppl):S31

    PubMed  Google Scholar 

  • Yao K, Troupis JM (2016) Diffusion-weighted imaging and the skeletal system: a literature review. Clin Radiol 71(11):1071–1082

    CAS  PubMed  Google Scholar 

  • Zhang J, Huang Y, Lu J et al (2018) Impact of first-line treatment on outcomes of Ewing sarcoma of the spine. Am J Cancer 8:1262–1272

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papakonstantinou, O., Vanhoenacker, F., Nöebauer-Huhmann, IM. (2024). Assessment of Postoperative Posttreatment Changes: General Considerations. In: Ladeb, M.F., Vanhoenacker, F. (eds) Imaging of Primary Tumors of the Osseous Spine. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2024_480

Download citation

  • DOI: https://doi.org/10.1007/174_2024_480

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56885-5

  • Online ISBN: 978-3-031-56886-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation