Marine Natural Products as Novel Treatments for Parasitic Diseases

  • Chapter
  • First Online:
Handbook of Experimental Pharmacology

Abstract

Parasitic diseases including malaria, leishmaniasis, and trypanosomiasis have received significant attention due to their severe health implications, especially in develo** countries. Marine natural products from a vast and diverse range of marine organisms such as sponges, corals, molluscs, and algae have been found to produce unique bioactive compounds that exhibit promising potent properties, including antiparasitic, anti-Plasmodial, anti-Leishmanial, and anti-Trypanosomal activities, providing hope for the development of effective treatments. Furthermore, various techniques and methodologies have been used to investigate the mechanisms of these antiparasitic compounds. Continued efforts in the discovery and development of marine natural products hold significant promise for the future of novel treatments against parasitic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

A. castellanii:

Acanthamoeba castellanii

CC50:

Half toxic dose

E. coli:

Escherichia coli

ED50:

Median effective dose

ED90:

90% effective dose

ELISA:

Enzyme-linked immunosorbent assay

H. zeae:

Heterodera zeae

H. contortus:

Heterodera contortus

IC50:

50%inhibiting concentration

IC90:

90% inhibition concentration

L. amazonensis:

Leishmania amazonensis

L. donovani:

Leishmania donovani

LC50:

Median lethal concentration

MNPs:

Marine natural products

P. berghei:

Plasmodium berghei

P. falciparum:

Plasmodium falciparum

P. yoelii:

Plasmodium yoelii

ROS:

Reactive oxygen species

S. coronopifolius:

Sphaerococcus coronopifolius

SI:

Selectivity index

T. b. brucei:

Trypanosoma brucei brucei

T. b. rhodesiense:

Trypanosoma brucei rhodesiense

T. brucei:

Trypanosoma brucei

T. cruzi:

Trypanosoma cruzi

TD50:

Median toxic dose

References

  • Ahmad A, Siddiqui PJA, Fayyaz S, Khan K, Iqbal EY, Rasheed M, Faizi S (2022) Bioassay directed fractionation of petroleum ether extract of aerial parts of Ceriops tagal: isolation of Lupeol as the Nematicidal agent against cyst nematode Heterodera zeae. Chem Biodivers 19(3):e202100759. https://doi.org/10.1002/cbdv.202100759

    Article  Google Scholar 

  • Alaithan H, Kumar N, Islam MZ, Liappis AP, Nava VE (2023) Novel therapeutics for malaria. Pharmaceutics 15(7). https://doi.org/10.3390/pharmaceutics15071800

  • Almaliti J, Malloy KL, Glukhov E, Spadafora C, Gutiérrez M, Gerwick WH (2017) Dudawalamides A-D, antiparasitic cyclic depsipeptides from the marine cyanobacterium Moorea producens. J Nat Prod 80(6):1827–1836. https://doi.org/10.1021/acs.jnatprod.7b00034

    Article  Google Scholar 

  • Altreuther G, Radeloff I, LeSueur C, Schimmel A, Krieger KJ (2009) Field evaluation of the efficacy and safety of emodepside plus praziquantel tablets (Profender tablets for dogs) against naturally acquired nematode and cestode infections in dogs. Parasitol Res 105(Suppl 1):S23–S29. https://doi.org/10.1007/s00436-009-1492-z

    Article  Google Scholar 

  • Alvarado S, Roberts BF, Wright AE, Chakrabarti D (2013) The bis(indolyl)imidazole alkaloid nortopsentin a exhibits antiplasmodial activity. Antimicrob Agents Chemother 57(5):2362–2364. https://doi.org/10.1128/aac.02091-12

    Article  Google Scholar 

  • Álvarez-Bardón M, Pérez-Pertejo Y, Ordóñez C, Sepúlveda-Crespo D, Carballeira NM, Tekwani BL, Balaña-Fouce R (2020) Screening marine natural products for new drug leads against Trypanosomatids and malaria. Mar Drugs 18(4). https://doi.org/10.3390/md18040187

  • Aminu R, Umar IA, Rahman MA, Ibrahim MA (2017) Stigmasterol retards the proliferation and pathological features of Trypanosoma congolense infection in rats and inhibits trypanosomal sialidase in vitro and in silico. Biomed Pharmacother 89:482–489. https://doi.org/10.1016/j.biopha.2017.02.068

    Article  Google Scholar 

  • Amliwala K, Bull K, Willson J, Harder A, Walker RJ (2004) Emodepside, a cyclo-octadepsipeptide anthelmintic with a novel mode of action. Drugs Future 29(10):1015–1024

    Google Scholar 

  • Angerhofer CK, Pezzuto JM, König GM, Wright AD, Sticher O (1992) Antimalarial activity of sesquiterpenes from the marine sponge Acanthella klethra. J Nat Prod 55(12):1787–1789. https://doi.org/10.1021/np50090a014

    Article  Google Scholar 

  • Appenzeller J, Mihci G, Martin MT, Gallard JF, Menou JL, Boury-Esnault N, Debitus C (2008) Agelasines J, K, and L from the Solomon Islands marine sponge Agelas cf. mauritiana. J Nat Prod 71(8):1451–1454. https://doi.org/10.1021/np800212g

    Article  Google Scholar 

  • Arberas-Jiménez I, García-Davis S, Rizo-Liendo A, Sifaoui I, Morales EQ, Piñero JE, Fernández JJ (2022) Cyclolauranes as plausible chemical scaffold against Naegleria fowleri. Biomed Pharmacother 149:112816. https://doi.org/10.1016/j.biopha.2022.112816

    Article  Google Scholar 

  • Avilés E, Prudhomme J, Le Roch KG, Rodríguez AD (2015) Structures, semisyntheses, and absolute configurations of the antiplasmodial α-substituted β-lactam monamphilectines B and C from the sponge Svenzea flava. Tetrahedron 71(3):487–494. https://doi.org/10.1016/j.tet.2014.11.060

    Article  Google Scholar 

  • Balachandran C, Al-Dhabi NA, Duraipandiyan V, Ignacimuthu S (2021) Bluemomycin, a new naphthoquinone derivative from Streptomyces sp. with antimicrobial and cytotoxic properties. Biotechnol Lett 43(5):1005–1018. https://doi.org/10.1007/s10529-021-03089-y

    Article  Google Scholar 

  • Balu N, Thomas JV, Bhat SV (1991) Monoterpenic fragment analogues of aplasmomycin as potential antimalarial. J Med Chem 34(9):2821–2823. https://doi.org/10.1021/jm00113a021

    Article  Google Scholar 

  • Barreto ALS, Alonso AN, Moraes DC, Curvelo JAR, Miranda K, Portela MB, Soares RMA (2022) Anti-Leishmania amazonensis activity of the marine sponge Dercitus (Stoeba) latex (Porifera) from São Pedro and São Paulo Archipelago, Pernambuco, Brazil. An Acad Bras Cienc 94(3):e20211090. https://doi.org/10.1590/0001-3765202220211090

    Article  Google Scholar 

  • Buedenbender L, Grkovic T, Duffy S, KurtböKe DI, Avery VM, Carroll AR (2016) Naseseazine C, a new anti-plasmodial dimeric diketopiperazine from a marine sediment derived Streptomyces sp. Tetrahedron Lett 57(52):5893–5895

    Google Scholar 

  • Buedenbender L, Robertson LP, Lucantoni L, Avery VM, Kurtböke D, Carroll AR (2018) HSQC-TOCSY fingerprinting-directed discovery of Antiplasmodial polyketides from the marine ascidian-derived Streptomyces sp. (USC-16018). Mar Drugs 16(6). https://doi.org/10.3390/md16060189

  • Cahyono AW, Fitri LE, Winarsih S, Prabandari EE, Waluyo D, Pramisandi A, Suciati S (2023) Nornidulin, A new inhibitor of plasmodium falciparum malate: quinone oxidoreductase (PfMQO) from Indonesian Aspergillus sp. BioMCC fT8501. Pharmaceuticals (Basel) 16(2). https://doi.org/10.3390/ph16020268

  • Campos PE, Wolfender JL, Queiroz EF, Marcourt L, Al-Mourabit A, Frederich M, Gauvin-Bialecki A (2017) Unguiculin A and Ptilomycalins E-H, Antimalarial guanidine alkaloids from the marine sponge Monanchora unguiculata. J Nat Prod 80(5):1404–1410. https://doi.org/10.1021/acs.jnatprod.6b01079

    Article  Google Scholar 

  • Cardona HRA, Froes TQ, Souza BC, Leite FHA, Brandão HN, Buaruang J, Alves CQ (2022) Thermal shift assays of marine-derived fungal metabolites from Aspergillus fischeri MMERU 23 against Leishmania major pteridine reductase 1 and molecular dynamics studies. J Biomol Struct Dyn 40(22):11968–11976. https://doi.org/10.1080/07391102.2021.1966510

    Article  Google Scholar 

  • Carroll AR, Fechner GA, Smith J, Guymer GP, Quinn RJ (2008) Prenylated dihydrochalcones from Boronia bipinnata that inhibit the malarial parasite enzyme target hemoglobinase II. J Nat Prod 71(8):1479–1480. https://doi.org/10.1021/np8002707

    Article  Google Scholar 

  • Carroll AR, Wild SJ, Duffy S, Avery VM (2012) Kororamide A, a new tribrominated indole alkaloid from the Australian bryozoan Amathia tortuosa. Tetrahedron Lett 53(23):2873–2875

    Google Scholar 

  • Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR (2022) Marine natural products. Nat Prod Rep 39(6):1122–1171. https://doi.org/10.1039/d1np00076d

    Article  Google Scholar 

  • Chan ST, Nani RR, Schauer EA, Martin GE, Williamson RT, Saurí J, Gustafson KR (2016) Characterization and synthesis of Eudistidine C, a bioactive marine alkaloid with an intriguing molecular scaffold. J Org Chem 81(22):10631–10640. https://doi.org/10.1021/acs.joc.6b02380

    Article  Google Scholar 

  • Chang HR, Pechère JC (1988) Activity of spiramycin against Toxoplasma gondii in vitro, in experimental infections and in human infection. J Antimicrob Chemother 22(Suppl B):87–92. https://doi.org/10.1093/jac/22.supplement_b.87

    Article  Google Scholar 

  • Chang YC, Chen NF, Hwang TL, Tseng CC, Wu TY, Peng BR, Sung PJ (2016) New marine sterols from an algal-bearing gorgonian coral Pinnigorgia sp. Steroids 115:123–129. https://doi.org/10.1016/j.steroids.2016.08.018

    Article  Google Scholar 

  • Cheng KC, Cao S, Raveh A, MacArthur R, Dranchak P, Chlipala G, Inglese J (2015) Actinoramide A identified as a potent antimalarial from titration-based screening of marine natural product extracts. J Nat Prod 78(10):2411–2422. https://doi.org/10.1021/acs.jnatprod.5b00489

    Article  Google Scholar 

  • Cheuka PM, Mayoka G, Mutai P, Chibale K (2016) The role of natural products in drug discovery and development against neglected tropical diseases. Molecules 22(1). https://doi.org/10.3390/molecules22010058

  • Chianese G, Silber J, Luciano P, Merten C, Erpenbeck D, Topaloglu B, Tasdemir D (2017) Antiprotozoal linear Furanosesterterpenoids from the marine Sponge Ircinia oros. J Nat Prod 80(9):2566–2571. https://doi.org/10.1021/acs.jnatprod.7b00543

    Article  Google Scholar 

  • Chiboub O, Sifaoui I, Lorenzo-Morales J, Abderrabba M, Mejri M, Fernández JJ, Díaz-Marrero AR (2019) Spiralyde A, an Antikinetoplastid Dolabellane from the Brown Alga Dictyota spiralis. Mar Drugs 17(3). https://doi.org/10.3390/md17030192

  • Chiboub O, Sifaoui I, Abderrabba M, Mejri M, Fernández JJ, Díaz-Marrero AR, Piñero JE (2021) Apoptosis-like cell death upon kinetoplastid induction by compounds isolated from the brown algae Dictyota spiralis. Parasit Vectors 14(1):198. https://doi.org/10.1186/s13071-021-04693-7

    Article  Google Scholar 

  • Chinworrungsee M, Kittakoop P, Isaka M, Rungrod A, Tanticharoen M, Thebtaranonth Y (2001) Antimalarial halorosellinic acid from the marine fungus Halorosellinia oceanica. Bioorg Med Chem Lett 11(15):1965–1969. https://doi.org/10.1016/s0960-894x(01)00327-4

    Article  Google Scholar 

  • Cotto-Rosario A, Miller EYD, Fumuso FG, Clement JA, Todd MJ, O'Connor RM (2022) The marine compound Tartrolon E targets the asexual and early sexual stages of Cryptosporidium parvum. Microorganisms 10(11). https://doi.org/10.3390/microorganisms10112260

  • da Costa M, Bolson GC, Bezerra de Barros I, Volkmer-Ribeiro C, Alencar Lima J, Celmar Costa França T, Santos I, Florêncio da Veiga-Junior V (2019) Chemical composition and biological activities of Metania and Drulia (Metaniidae) freshwater sponges from Amazonia. Chem Biodivers 16(8):e1900318. https://doi.org/10.1002/cbdv.201900318

    Article  Google Scholar 

  • Dahlem Junior MA, Nguema Edzang RW, Catto AL, Raimundo JM (2022) Quinones as an efficient molecular scaffold in the antibacterial/antifungal or Antitumoral arsenal. Int J Mol Sci 23(22). https://doi.org/10.3390/ijms232214108

  • Davis RA, Duffy S, Avery VM, Camp D, Quinn RJ (2010) (+)-7-Bromotrypargine: an antimalarial β-carboline from the Australian marine sponge Ancorina sp. Tetrahedron Lett 51(4):583–585

    Google Scholar 

  • Davis RA, Sykes M, Avery VM, Camp D, Quinn RJ (2011) Convolutamines I and J, antitrypanosomal alkaloids from the bryozoan Amathia tortusa. Bioorg Med Chem 19(22):6615–6619. https://doi.org/10.1016/j.bmc.2011.06.006

    Article  Google Scholar 

  • Davis RA, Buchanan MS, Duffy S, Avery VM, Charman SA, Charman WN, Quinn RJ (2012) Antimalarial activity of pyrroloiminoquinones from the Australian marine sponge Zyzzya sp. J Med Chem 55(12):5851–5858. https://doi.org/10.1021/jm3002795

    Article  Google Scholar 

  • Davis RA, Duffy S, Fletcher S, Avery VM, Quinn RJ (2013) Thiaplakortones A-D: antimalarial thiazine alkaloids from the Australian marine sponge Plakortis lita. J Org Chem 78(19):9608–9613. https://doi.org/10.1021/jo400988y

    Article  Google Scholar 

  • de Almeida Nogueira NP, Morgado-Díaz JA, Menna-Barreto RF, Paes MC, da Silva-López RE (2013) Effects of a marine serine protease inhibitor on viability and morphology of Trypanosoma cruzi, the agent of Chagas disease. Acta Trop 128(1):27–35. https://doi.org/10.1016/j.actatropica.2013.05.013

    Article  Google Scholar 

  • De Lima AR, Noris-Suárez K, Bretaña A, Contreras VT, Navarro MC, Pérez-Ybarra L, Bubis J (2017) Growth arrest and morphological changes triggered by emodin on Trypanosoma cruzi epimastigotes cultivated in axenic medium. Biochimie 142:31–40. https://doi.org/10.1016/j.biochi.2017.08.005

    Article  Google Scholar 

  • Desoubzdanne D, Marcourt L, Raux R, Chevalley S, Dorin D, Doerig C et al (2008) Alisiaquinones and alisiaquinol, dual inhibitors of plasmodium falciparum enzyme targets from a new Caledonian deep water sponge. J Nat Prod 71(7):1189–1192. https://doi.org/10.1021/np8000909

    Article  Google Scholar 

  • Donia M, Hamann MT (2003) Marine natural products and their potential applications as anti-infective agents. Lancet Infect Dis 3(6):338–348. https://doi.org/10.1016/s1473-3099(03)00655-8

    Article  Google Scholar 

  • Donia MS, Wang B, Dunbar DC, Desai PV, Patny A, Avery M, Hamann MT (2008) Mollamides B and C, cyclic hexapeptides from the indonesian tunicate Didemnum molle. J Nat Prod 71(6):941–945. https://doi.org/10.1021/np700718p

    Article  Google Scholar 

  • Dos Santos GS, Miyasato PA, Stein EM, Colepicolo P, Wright AD, Pereira CAB, Nakano E (2022) Algal-derived halogenated Sesquiterpenes from Laurencia dendroidea as Lead compounds in schistosomiasis environmental control. Mar Drugs 20(2). https://doi.org/10.3390/md20020111

  • El Gamal AA (2010) Biological importance of marine algae. Saudi Pharm J 18(1):1–25. https://doi.org/10.1016/j.jsps.2009.12.001

    Article  Google Scholar 

  • Elmaidomy AH, Zahran EM, Soltane R, Alasiri A, Saber H, Ngwa CJ, Abdelmohsen UR (2022) New halogenated compounds from Halimeda macroloba seaweed with potential inhibitory activity against malaria. Molecules 27(17). https://doi.org/10.3390/molecules27175617

  • El-Saber Batiha G, Alqahtani A, Ilesanmi OB, Saati AA, El-Mleeh A, Hetta HF, Magdy Beshbishy A (2020) Avermectin derivatives, pharmacokinetics, therapeutic and toxic dosages, mechanism of action, and their biological effects. Pharmaceuticals (Basel) 13(8). https://doi.org/10.3390/ph13080196

  • Engels D, Zhou XN (2020) Neglected tropical diseases: an effective global response to local poverty-related disease priorities. Infect Dis Poverty 9(1):10. https://doi.org/10.1186/s40249-020-0630-9

    Article  Google Scholar 

  • Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I (2019) Multiscale simulations of biological membranes: the challenge to understand biological phenomena in a living substance. Chem Rev 119(9):5607–5774. https://doi.org/10.1021/acs.chemrev.8b00538

    Article  Google Scholar 

  • Espinosa-Bustos C, Ortiz Pérez M, Gonzalez-Gonzalez A, Zarate AM, Rivera G, Belmont-Díaz JA et al (2022) New amino naphthoquinone derivatives as anti-Trypanosoma cruzi agents targeting Trypanothione reductase. Pharmaceutics 14(6). https://doi.org/10.3390/pharmaceutics14061121

  • Etahiri S, Bultel-Poncé V, Caux C, Guyot M (2001) New bromoditerpenes from the red alga Sphaerococcus coronopifolius. J Nat Prod 64(8):1024–1027. https://doi.org/10.1021/np0002684

    Article  Google Scholar 

  • Farokhi F, Grellier P, Clément M, Roussakis C, Loiseau PM, Genin-Seward E, Wielgosz-Collin G (2013) Antimalarial activity of axidjiferosides, new β-galactosylceramides from the African sponge Axinyssa djiferi. Mar Drugs 11(4):1304–1315. https://doi.org/10.3390/md11041304

    Article  Google Scholar 

  • Federici L, Masulli M, De Laurenzi V, Allocati N (2022) An overview of bats microbiota and its implication in transmissible diseases. Front Microbiol 13:1012189. https://doi.org/10.3389/fmicb.2022.1012189

    Article  Google Scholar 

  • Feng Y, Davis RA, Sykes ML, Avery VM, Carroll AR, Camp D, Quinn RJ (2010) Antitrypanosomal pyridoacridine alkaloids from the Australian ascidian Polysyncraton echinatum. Tetrahedron Lett 51(18):2477–2479

    Google Scholar 

  • Festa C, De Marino S, Zampella A, Fiorucci S (2023) Theonella: a treasure trove of structurally unique and biologically active sterols. Mar Drugs 21(5). https://doi.org/10.3390/md21050291

  • Fuwa H, Kainuma N, Satake M, Sasaki M (2003) Synthesis and biological evaluation of gambierol analogues. Bioorg Med Chem Lett 13(15):2519–2522. https://doi.org/10.1016/s0960-894x(03)00467-0

    Article  Google Scholar 

  • García PA, Hernández ÁP, San Feliciano A, Castro M (2018) Bioactive prenyl- and terpenyl-quinones/hydroquinones of marine origin (†). Mar Drugs 16(9). https://doi.org/10.3390/md16090292

  • García-Davis S, Sifaoui I, Reyes-Batlle M, Viveros-Valdez E, Piñero JE, Lorenzo-Morales J, Díaz-Marrero AR (2018) Anti-Acanthamoeba activity of brominated Sesquiterpenes from Laurencia johnstonii. Mar Drugs 16(11). https://doi.org/10.3390/md16110443

  • Garzón SP, Rodríguez AD, Sánchez JA, Ortega-Barria E (2005) Sesquiterpenoid metabolites with antiplasmodial activity from a Caribbean gorgonian coral, Eunicea sp. J Nat Prod 68(9):1354–1359. https://doi.org/10.1021/np0501684

    Article  Google Scholar 

  • Geary TG (2005) Ivermectin 20 years on: maturation of a wonder drug. Trends Parasitol 21(11):530–532. https://doi.org/10.1016/j.pt.2005.08.014

    Article  Google Scholar 

  • Goclik E, König GM, Wright AD, Kaminsky R (2000) Pelorol from the tropical marine sponge Dactylospongia elegans. J Nat Prod 63(8):1150–1152. https://doi.org/10.1021/np990502u

    Article  Google Scholar 

  • Gómez-Estrada H, Gaitán-Ibarra R, Díaz-Castillo F et al (2012) In vitro antimalarial activity of fractions and constituents isolated from Tabebuia billbergii. Rev Cubana Plant Med 17(2):172–180

    Google Scholar 

  • Gonçalves-Oliveira LF, Peixoto JF, Dias-Lopes G, Souza-Silva F, Côrtes LMC, Rocha HVA, Alves CR (2023) Assessing nystatin cream treatment efficacy against Leishmania (L.) amazonensis infection in BALB/c model. Exp Parasitol 250:108547. https://doi.org/10.1016/j.exppara.2023.108547

    Article  Google Scholar 

  • Gros E, Martin MT, Sorres J, Moriou C, Vacelet J, Frederich M, Al-Mourabit A (2015) Netamines O-S, five new tricyclic guanidine alkaloids from the Madagascar sponge Biemna laboutei, and their antimalarial activities. Chem Biodivers 12(11):1725–1733. https://doi.org/10.1002/cbdv.201400350

    Article  Google Scholar 

  • Gulprasutdilog S, Suputtamongkol Y, Jaroonvesama N (1996) Treatment of falciparum malaria with quinine-erythromycin

    Google Scholar 

  • Gutiérrez M, Capson TL, Guzman HM, Gonzalez J, Ortega-Barría E, Quiñoa E, Riguera R (2006) Antiplasmodial metabolites isolated from the marine octocoral Muricea austera. J Nat Prod 69(10):1379–1383. https://doi.org/10.1021/np060007f

    Article  Google Scholar 

  • Hadisaputri YE, Nurhaniefah AA, Sukmara S, Zuhrotun A, Hendriani R, Sopyan I (2023) Callyspongia spp.: secondary metabolites, pharmacological activities, and mechanisms. Metabolites 13(2). https://doi.org/10.3390/metabo13020217

  • Harinantenaina Rakotondraibe L, Rasolomampianina R, Park HY, Li J, Slebodnik C, Brodie PJ, Kingston DG (2015) Antiproliferative and antiplasmodial compounds from selected Streptomyces species. Bioorg Med Chem Lett 25(23):5646–5649. https://doi.org/10.1016/j.bmcl.2015.07.103

    Article  Google Scholar 

  • Hayes S, Taki AC, Lum KY, Byrne JJ, White JM, Ekins MG, Davis RA (2022) Identification of anthelmintic Bishomoscalarane Sesterterpenes from the Australian marine sponge Phyllospongia bergquistae and structure revision of Phyllolactones A-D. J Nat Prod 85(7):1723–1729. https://doi.org/10.1021/acs.jnatprod.2c00229

    Article  Google Scholar 

  • Hong LL, Ding YF, Zhang W, Lin HW (2022) Chemical and biological diversity of new natural products from marine sponges: a review (2009-2018). Mar Life Sci Technol 4(3):356–372. https://doi.org/10.1007/s42995-022-00132-3

    Article  Google Scholar 

  • Huang H, Yao Y, He Z, Yang T, Ma J, Tian X, Ju J (2011) Antimalarial β-carboline and indolactam alkaloids from Marinactinospora thermotolerans, a deep sea isolate. J Nat Prod 74(10):2122–2127. https://doi.org/10.1021/np200399t

    Article  Google Scholar 

  • Ilias M, Ibrahim MA, Khan SI, Jacob MR, Tekwani BL, Walker LA, Samoylenko V (2012) Pentacyclic ingamine alkaloids, a new antiplasmodial pharmacophore from the marine sponge Petrosid Ng5 Sp5. Planta Med 78(15):1690–1697. https://doi.org/10.1055/s-0032-1315213

    Article  Google Scholar 

  • Ireland CM, Copp BR, Foster MP, Mcdonald LA, Swersey JC (2000) Bioactive compounds from the sea. M. Dekker

    Google Scholar 

  • Islam MT, Mubarak MS (2020) Pyrrolidine alkaloids and their promises in pharmacotherapy. Adv Tradit Med 20(8)

    Google Scholar 

  • Ivanchina NV, Kalinin VI (2023) Triterpene and steroid glycosides from marine sponges (Porifera, Demospongiae): structures, taxonomical distribution, biological activities. Molecules 28(6). https://doi.org/10.3390/molecules28062503

  • Iwasaki A et al (2018) Hoshinoamides A and B, acyclic Lipopeptides from the marine cyanobacterium Caldora penicillata. J Nat Prod 81:2545–2552

    Google Scholar 

  • Iwasaki K, Iwasaki A, Sumimoto S, Matsubara T, Sato T, Nozaki T, Suenaga K (2020) Ikoamide, an antimalarial Lipopeptide from an Okeania sp. marine cyanobacterium. J Nat Prod 83(2):481–488. https://doi.org/10.1021/acs.jnatprod.9b01147

    Article  Google Scholar 

  • Iwasaki A, Ohtomo K, Kurisawa N, Shiota I, Rahmawati Y, Jeelani G, Suenaga K (2021a) Isolation, structure determination, and total synthesis of Hoshinoamide C, an Antiparasitic Lipopeptide from the marine cyanobacterium Caldora penicillata. J Nat Prod 84(1):126–135. https://doi.org/10.1021/acs.jnatprod.0c01209

    Article  Google Scholar 

  • Iwasaki A, Teranuma K, Kurisawa N, Rahmawati Y, Jeelani G, Nozaki T, Suenaga K (2021b) First Total synthesis and structure-activity relationship of Iheyamide A, an Antitrypanosomal linear peptide isolated from a Dapis sp. marine cyanobacterium. J Nat Prod 84(9):2587–2593. https://doi.org/10.1021/acs.jnatprod.1c00792

    Article  Google Scholar 

  • Jimeno JM (2002) A clinical armamentarium of marine-derived anti-cancer compounds. Anticancer Drugs 13(Suppl 1):S15–S19

    Google Scholar 

  • Ju E, Latif A, Kong CS, Seo Y, Lee YJ, Dalal SR, Kingston DGI (2018) Antimalarial activity of the isolates from the marine sponge Hyrtios erectus against the chloroquine-resistant Dd2 strain of Plasmodium falciparum. Z Naturforsch C J Biosci 73(9–10):397–400. https://doi.org/10.1515/znc-2018-0025

    Article  Google Scholar 

  • Kaminsky R, Ducray P, Jung M, Clover R, Rufener L, Bouvier J, Mäser P (2008) A new class of anthelmintics effective against drug-resistant nematodes. Nature 452(7184):176–180. https://doi.org/10.1038/nature06722

    Article  Google Scholar 

  • Kanoh S, Rubin BK (2010) Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin Microbiol Rev 23(3):590–615. https://doi.org/10.1128/cmr.00078-09

    Article  Google Scholar 

  • Kaur K, Jain M, Reddy RP, Jain R (2010) Quinolines and structurally related heterocycles as antimalarials. Eur J Med Chem 45(8):3245–3264. https://doi.org/10.1016/j.ejmech.2010.04.011

    Article  Google Scholar 

  • Kelly P, Hadi-Nezhad F, Liu DY, Lawrence TJ, Linington RG, Ibba M, Ardell DH (2020) Targeting tRNA-synthetase interactions towards novel therapeutic discovery against eukaryotic pathogens. PLoS Negl Trop Dis 14(2):e0007983. https://doi.org/10.1371/journal.pntd.0007983

    Article  Google Scholar 

  • Khotimchenko Y (2018) Pharmacological potential of sea cucumbers. Int J Mol Sci 19(5). https://doi.org/10.3390/ijms19051342

  • Kleks G, Duffy S, Lucantoni L, Avery VM, Carroll AR (2020a) Orthoscuticellines A-E, β-Carboline alkaloids from the bryozoan Orthoscuticella ventricosa collected in Australia. J Nat Prod 83(2):422–428. https://doi.org/10.1021/acs.jnatprod.9b00933

    Article  Google Scholar 

  • Kleks G, Holland DC, Kennedy EK, Avery VM, Carroll AR (2020b) Antiplasmodial alkaloids from the Australian bryozoan Amathia lamourouxi. J Nat Prod 83(11):3435–3444. https://doi.org/10.1021/acs.jnatprod.0c00929

    Article  Google Scholar 

  • Kouipou RMT (2019) Anti-leishmanial and anti-inflammatory agents from endophytes: a review. Nat Prod Bioprospect 9(5):311–328

    Google Scholar 

  • Kurimoto SI, Ohno T, Hokari R, Ishiyama A, Iwatsuki M, Ōmura S, Kubota T (2018) Ceratinadins E and F, new bromotyrosine alkaloids from an Okinawan marine sponge Pseudoceratina sp. Mar Drugs 16(12). https://doi.org/10.3390/md16120463

  • Kurisawa N et al (2020) Iheyamides A−C, antitrypanosomal linear peptides isolated from a marine Dapis sp. Cyanobacterium. J Nat Prod 83(5):1684–1690

    Google Scholar 

  • Kurisawa N, Otomo K, Iwasaki A, Jeelani G, Nozaki T, Suenaga K (2021) Isolation and total synthesis of kinenzoline, an antitrypanosomal linear depsipeptide isolated from a marine Salileptolyngbya sp. Cyanobacterium. J Org Chem 86(18):12528–12536. https://doi.org/10.1021/acs.joc.1c00817

    Article  Google Scholar 

  • Lane AL, Stout EP, Lin AS, Prudhomme J, Roch KL, Fairchild CR, Kubanek J (2009) Antimalarial bromophycolides J-Q from the Fijian red alga Callophycus serratus. J Org Chem 74(7):2736

    Google Scholar 

  • Laurent D, Jullian V, Parenty A, Knibiehler M, Dorin D, Schmitt S, Sauvain M (2006) Antimalarial potential of xestoquinone, a protein kinase inhibitor isolated from a Vanuatu marine sponge Xestospongia sp. Bioorg Med Chem 14(13):4477–4482. https://doi.org/10.1016/j.bmc.2006.02.026

    Article  Google Scholar 

  • Lenz KD, Klosterman KE, Mukundan H, Kubicek-Sutherland JZ (2021) Macrolides: from toxins to therapeutics. Toxins (Basel) 13(5). https://doi.org/10.3390/toxins13050347

  • Li X, Yan Y, **e S, Li Z, **a H (2023) Enhancement of milbemycins production by phosphopantetheinyl transferase and regulatory pathway engineering in Streptomyces bingchenggensis. World J Microbiol Biotechnol 39(10):278. https://doi.org/10.1007/s11274-023-03727-9

    Article  Google Scholar 

  • Linington RG, Gonzalez J, Ureña LD, Romero LI, Ortega-Barría E, Gerwick WH (2007) Venturamides A and B: antimalarial constituents of the panamanian marine cyanobacterium Oscillatoria sp. J Nat Prod 70(3):397–401. https://doi.org/10.1021/np0605790

    Article  Google Scholar 

  • Linington RG, Edwards DJ, Shuman CF, McPhail KL, Matainaho T, Gerwick WH (2008) Symplocamide A, a potent cytotoxin and chymotrypsin inhibitor from the marine cyanobacterium Symploca sp. J Nat Prod 71(1):22–27. https://doi.org/10.1021/np070280x

    Article  Google Scholar 

  • Linington RG, Clark BR, Trimble EE, Almanza A, Ureña LD, Kyle DE, Gerwick WH (2009) Antimalarial peptides from marine cyanobacteria: isolation and structural elucidation of gallinamide A. J Nat Prod 72(1):14–17. https://doi.org/10.1021/np8003529

    Article  Google Scholar 

  • Liu Y, Xu J, Zhang Y, Shen Y, Li Z (2023) Rapid ring-opening polymerization of γ-Butyrolactone toward high-molecular-weight poly (γ-butyrolactone) by an Organophosphazene Base and Bisurea binary catalyst. Chem Asian J 18(3):e202201107. https://doi.org/10.1002/asia.202201107

    Article  Google Scholar 

  • Lu D, Zhang NZ, Yao Y, Wang T, Hua Q, Zheng X et al (2022) Investigation of antiparasitic activity of two marine natural products, estradiol benzoate, and Octyl Gallate, on toxoplasma gondii in vitro. Front Pharmacol 13:841941. https://doi.org/10.3389/fphar.2022.841941

    Article  Google Scholar 

  • Luesch H, Yoshida WY, Moore RE, Paul VJ, Mooberry SL, Corbett TH (2002) Symplostatin 3, a new dolastatin 10 analogue from the marine cyanobacterium Symploca sp. VP452. J Nat Prod 65(1):16–20. https://doi.org/10.1021/np010317s

    Article  Google Scholar 

  • Ma Y, Cao X, Wang H, Song X, Hu D (2022) In vitro and in vivo activities of tilmicosin and acetylisovaleryltylosin tartrate against toxoplasma gondii. Int J Mol Sci 23(17). https://doi.org/10.3390/ijms23179586

  • Marcelino G, Capson TL, Héctor G (2006) Antiplasmodial metabolites isolated from the marine Octocoral Muricea austera. J Nat Prod

    Google Scholar 

  • Matsuo H, Hokari R, Ishiyama A, Iwatsuki M, Higo M, Nonaka K, Nakashima T (2020) Hatsusamides A and B: two new metabolites produced by the Deep-Sea-derived fungal strain Penicillium steckii FKJ-0213. Mar Drugs 18(10). https://doi.org/10.3390/md18100513

  • Mayer AMS, Rodríguez AD, Taglialatela-Scafati O, Fusetani N (2017) Marine pharmacology in 2012-2013: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar Drugs 15(9). https://doi.org/10.3390/md15090273

  • Mayer AMS, Guerrero AJ, Rodríguez AD, Taglialatela-Scafati O, Nakamura F, Fusetani N (2019) Marine pharmacology in 2014-2015: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, antiviral, and anthelmintic activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar Drugs 18(1). https://doi.org/10.3390/md18010005

  • Mayer AMS, Guerrero AJ, Rodríguez AD, Taglialatela-Scafati O, Nakamura F, Fusetani N (2021) Marine pharmacology in 2016-2017: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, Antituberculosis and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar Drugs 19(2). https://doi.org/10.3390/md19020049

  • McPherson S, Solomon AW, Seife F, Solomon H, Gebre T, Mabey DCW, Marks M (2023) Pharmacokinetics, feasibility and safety of co-administering azithromycin, albendazole, and ivermectin during mass drug administration: a review. PLoS Negl Trop Dis 17(6):e0011224. https://doi.org/10.1371/journal.pntd.0011224

    Article  Google Scholar 

  • Meyer M, Delberghe F, Liron F, Guillaume M, Valentin A, Guyot M (2009) An antiplasmodial new (bis)indole alkaloid from the hard coral Tubastraea sp. Nat Prod Res 23(2):178–182. https://doi.org/10.1080/14786410801925134

    Article  Google Scholar 

  • Mi Y, Zhang J, He S, Yan X (2017) New peptides isolated from marine cyanobacteria, an overview over the past decade. Mar Drugs 15(5). https://doi.org/10.3390/md15050132

  • Mudianta IW, Skinner-Adams T, Andrews KT, Davis RA, Hadi TA, Hayes PY, Garson MJ (2012) Psammaplysin derivatives from the Balinese marine sponge Aplysinella strongylata. J Nat Prod 75(12):2132–2143. https://doi.org/10.1021/np300560b

    Article  Google Scholar 

  • Munedzimwe TC, van Zyl RL, Heslop DC, Edkins AL, Beukes DR (2019) Semi-synthesis and evaluation of Sargahydroquinoic acid derivatives as potential antimalarial agents. Medicines (Basel) 6(2). https://doi.org/10.3390/medicines6020047

  • Musiol R, Malarz K, Mularski J (2017) Quinoline alkaloids against neglected tropical diseases. Curr Org Chem 21(999):1–11

    Google Scholar 

  • Nakao Y, Kawatsu S, Okamoto C, Okamoto M, Matsumoto Y, Matsunaga S et al (2008) Ciliatamides A-C, bioactive lipopeptides from the deep-sea sponge Aaptos ciliata. J Nat Prod 71(3):469–472. https://doi.org/10.1021/np8000317

    Article  Google Scholar 

  • Negm WA, Ezzat SM, Zayed A (2023) Marine organisms as potential sources of natural products for the prevention and treatment of malaria. RSC Adv 13(7):4436–4475. https://doi.org/10.1039/d2ra07977a

    Article  Google Scholar 

  • Nieves K, Prudhomme J, Le Roch KG, Franzblau SG, Rodríguez AD (2016) Natural product-based synthesis of novel anti-infective isothiocyanate- and isoselenocyanate-functionalized amphilectane diterpenes. Bioorg Med Chem Lett 26(3):854–857. https://doi.org/10.1016/j.bmcl.2015.12.080

    Article  Google Scholar 

  • Noor R, Zahoor AF, Mansha A, Khan SG, Haq AU, Ahmad S et al (2023) Synthetic potential of regio- and stereoselective ring expansion reactions of six-membered carbo- and heterocyclic ring systems: a review. Int J Mol Sci 24(7). https://doi.org/10.3390/ijms24076692

  • Nweze JA, Mbaoji FN, Huang G, Li Y, Yang L, Zhang Y et al (2020) Antibiotics development and the potentials of marine-derived compounds to stem the tide of multidrug-resistant pathogenic bacteria, fungi, and protozoa. Mar Drugs 18(3). https://doi.org/10.3390/md18030145

  • Ogawa H, Iwasaki A, Sumimoto S, Kanamori Y, Ohno O, Iwatsuki M, Suenaga K (2016) Janadolide, a cyclic polyketide-peptide hybrid possessing a tert-butyl group from an Okeania sp. marine cyanobacterium. J Nat Prod 79(7):1862–1866. https://doi.org/10.1021/acs.jnatprod.6b00171

    Article  Google Scholar 

  • Ogawa H, Iwasaki A, Sumimoto S, Iwatsuki M, Ishiyama A, Hokari R, Suenaga K (2017) Isolation and total synthesis of hoshinolactam, an antitrypanosomal lactam from a marine cyanobacterium. Org Lett 19(4):890–893. https://doi.org/10.1021/acs.orglett.7b00047

    Article  Google Scholar 

  • Oluwabusola ET, Tabudravu JN, Al Maqbali KS, Annang F, Pérez-Moreno G, Reyes F, Jaspars M (2020) Antiparasitic activity of bromotyrosine alkaloids and new analogues isolated from the Fijian marine sponge Aplysinella rhax. Chem Biodivers 17(10):e2000335. https://doi.org/10.1002/cbdv.202000335

    Article  Google Scholar 

  • Orhan I, Sener B, Atici T, Brun R, Perozzo R, Tasdemir D (2006) Turkish freshwater and marine macrophyte extracts show in vitro antiprotozoal activity and inhibit FabI, a key enzyme of plasmodium falciparum fatty acid biosynthesis. Phytomedicine 13(6):388–393. https://doi.org/10.1016/j.phymed.2005.10.010

    Article  Google Scholar 

  • Orhan I, Sener B, Kaiser M, Brun R, Tasdemir D (2010) Inhibitory activity of marine sponge-derived natural products against parasitic protozoa. Mar Drugs 8(1):47–58. https://doi.org/10.3390/md8010047

    Article  Google Scholar 

  • Osei E et al (2019) Paenidigyamycin A, Potent Antiparasitic Imidazole Alkaloid from the Ghanaian Paenibacillus sp. DE2SH. Mar Drugs 17(1):9

    Google Scholar 

  • Ospina CA, Rodríguez AD, Sánchez JA, Ortega-Barria E, Capson TL, Mayer AM (2005) Caucanolides A-F, unusual antiplasmodial constituents from a colombian collection of the gorgonian coral Pseudopterogorgia bipinnata. J Nat Prod 68(10):1519–1526. https://doi.org/10.1021/np050239z

    Article  Google Scholar 

  • Osterhage C, König GM, Höller U, Wright AD (2002) Rare sesquiterpenes from the algicolous fungus Drechslera dematioidea. J Nat Prod 65(3):306–313. https://doi.org/10.1021/np010092l

    Article  Google Scholar 

  • Pandey SK, Anand U, Siddiqui WA, Tripathi R (2023) Drug development strategies for malaria: with the Hope for new antimalarial drug discovery-an update. Adv Med 2023:5060665. https://doi.org/10.1155/2023/5060665

    Article  Google Scholar 

  • Pereira CG, Moraes CB, Franco CH, Feltrin C, Grougnet R, Barbosa EG et al (2021) In vitro anti-trypanosoma cruzi activity of halophytes from southern portugal reloaded: a special focus on Sea Fennel (Crithmum maritimum L.). Plants (Basel) 10(11). https://doi.org/10.3390/plants10112235

  • Perumal P, Sowmiya R, Prasanna Kumar S, Ravikumar S, Deepak P, Balasubramani G (2018) Isolation, structural elucidation and antiplasmodial activity of fucosterol compound from brown seaweed, Sargassum linearifolium against malarial parasite plasmodium falciparum. Nat Prod Res 32(11):1316–1319. https://doi.org/10.1080/14786419.2017.1342081

    Article  Google Scholar 

  • Pettit GR, Herald CL, Doubek DL, Herald DL, Clardy J (1982) Isolation and structure of bryostatin 1. J Am Chem Soc 104(24):6846–6848

    Google Scholar 

  • Pomponi SA (1999) The bioprocess-technological potential of the sea. Prog Ind Microbiol 35(1–3):5–13

    Google Scholar 

  • Portmann C, Blom JF, Gademann K, Jüttner F (2008a) Aerucyclamides A and B: isolation and synthesis of toxic ribosomal heterocyclic peptides from the cyanobacterium Microcystis aeruginosa PCC 7806. J Nat Prod 71(7):1193–1196. https://doi.org/10.1021/np800118g

    Article  Google Scholar 

  • Portmann C, Blom JF, Kaiser M, Brun R, Jüttner F, Gademann K (2008b) Isolation of aerucyclamides C and D and structure revision of microcyclamide 7806A: heterocyclic ribosomal peptides from Microcystis aeruginosa PCC 7806 and their antiparasite evaluation. J Nat Prod 71(11):1891–1896. https://doi.org/10.1021/np800409z

    Article  Google Scholar 

  • Portmann C, Sieber S, Wirthensohn S, Blom JF, Da Silva L, Baudat E, Gademann K (2014) Balgacyclamides, antiplasmodial heterocyclic peptides from Microcystis aeruguinosa EAWAG 251. J Nat Prod 77(3):557–562. https://doi.org/10.1021/np400814w

    Article  Google Scholar 

  • Prebble DW, Holland DC, Robertson LP, Avery VM, Carroll AR (2020) Citronamine A, an antiplasmodial isoquinoline alkaloid from the Australian marine sponge Citronia astra. Org Lett 22(24):9574–9578. https://doi.org/10.1021/acs.orglett.0c03633

    Article  Google Scholar 

  • Prudhomme J, McDaniel E, Ponts N, Bertani S, Fenical W, Jensen P, Le Roch K (2008) Marine actinomycetes: a new source of compounds against the human malaria parasite. PLoS One 3(6):e2335. https://doi.org/10.1371/journal.pone.0002335

    Article  Google Scholar 

  • Rahman MA, Dash R, Sohag AAM, Alam M, Rhim H, Ha H, Hannan MA (2021) Prospects of marine sterols against pathobiology of Alzheimer's disease: pharmacological insights and technological advances. Mar Drugs 19(3). https://doi.org/10.3390/md19030167

  • Raju R, Khalil ZG, Piggott AM, Blumenthal A, Gardiner DL, Skinner-Adams TS, Capon RJ (2014) Mollemycin A: an antimalarial and antibacterial glyco-hexadepsipeptide-polyketide from an Australian marine-derived Streptomyces sp. (CMB-M0244). Org Lett 16(6):1716–1719. https://doi.org/10.1021/ol5003913

    Article  Google Scholar 

  • Ramírez-Macías I, Marín C, Es-Samti H, Fernández A, Guardia JJ, Zentar H, Sánchez-Moreno M (2012) Taiwaniaquinoid and abietane quinone derivatives with trypanocidal activity against T. cruzi and Leishmania spp. Parasitol Int 61(3):405–413. https://doi.org/10.1016/j.parint.2012.02.001

    Article  Google Scholar 

  • Rani R, Sethi K, Kumar S, Varma RS, Kumar R (2022) Natural naphthoquinones and their derivatives as potential drug molecules against trypanosome parasites. Chem Biol Drug Des 100(6):786–817. https://doi.org/10.1111/cbdd.14122

    Article  Google Scholar 

  • Ranjbar R, Shayanfar P, Maniati M (2021) In vitro antileishmanial effects of saffron compounds, Crocin and Stigmasterol, on Iranian strain of Leishmania major (MHOM/IR/75/ER). Iran J Parasitol 16(1):151–158. https://doi.org/10.18502/ijpa.v16i1.5535

    Article  Google Scholar 

  • Ribeiro-Rodrigues R, Santos WGD, Oliveira AB, Snieckus V, Romanha AJ (1995) Growth inhibitory effect of naphthofuran and naphthofuranquinone derivatives on Trypanosoma cruzi epimastigotes. Bioorg Med Chem Lett 5(14):1509–1512

    Google Scholar 

  • Rickards RW, Rothschild JM, Willis AC, Chazal NMD, Smith GD (1999) Calothrixins A and B, novel pentacyclic metabolites from calothrix cyanobacteria with potent activity against malaria parasites and human cancer cells. Tetrahedron 55(47):13513–13520

    Google Scholar 

  • Saeidnia S, Gohari AR, Haddadi A (2013) Biogenic trypanocidal sesquiterpenes: lead compounds to design future trypanocidal drugs – a mini review. Daru 21(1):35. https://doi.org/10.1186/2008-2231-21-35

    Article  Google Scholar 

  • Sakamaki JI, Mizushima N (2023) Cell biology of protein-lipid conjugation. Cell Struct Funct 48(1):99–112. https://doi.org/10.1247/csf.23016

    Article  Google Scholar 

  • Sanchez LM, Lopez D, Vesely BA, Della Togna G, Gerwick WH, Kyle DE, Linington RG (2010) Almiramides A-C: discovery and development of a new class of leishmaniasis lead compounds. J Med Chem 53(10):4187–4197. https://doi.org/10.1021/jm100265s

    Article  Google Scholar 

  • Sanchez LM, Knudsen GM, Helbig C, De Muylder G, Mascuch SM, Mackey ZB et al (2013) Examination of the mode of action of the almiramide family of natural products against the kinetoplastid parasite Trypanosoma brucei. J Nat Prod 76(4):630–641. https://doi.org/10.1021/np300834q

    Article  Google Scholar 

  • Sangsopha W, Lekphrom R, Schevenels FT, Kanokmedhakul K, Kanokmedhakul S (2020) Two new bioactive triterpenoids from the roots of Colubrina asiatica. Nat Prod Res 34(4):482–488. https://doi.org/10.1080/14786419.2018.1489385

    Article  Google Scholar 

  • Santos MF, Harper PM, Williams DE, Mesquita JT, Pinto ÉG, da Costa-Silva TA, Berlinck RG (2015) Anti-parasitic guanidine and pyrimidine alkaloids from the marine sponge Monanchora arbuscula. J Nat Prod 78(5):1101–1112. https://doi.org/10.1021/acs.jnatprod.5b00070

    Article  Google Scholar 

  • Saraiva RG, Huitt-Roehl CR, Tripathi A, Cheng YQ, Bosch J, Townsend CA, Dimopoulos G (2018) Chromobacterium spp. mediate their anti-plasmodium activity through secretion of the histone deacetylase inhibitor romidepsin. Sci Rep 8(1):6176. https://doi.org/10.1038/s41598-018-24296-0

    Article  Google Scholar 

  • Sarewicz M, Pintscher S, Pietras R, Borek A, Bujnowicz Ł, Hanke G, Osyczka A (2021) Catalytic reactions and energy conservation in the cytochrome bc(1) and b(6)f complexes of energy-transducing membranes. Chem Rev 121(4):2020–2108. https://doi.org/10.1021/acs.chemrev.0c00712

    Article  Google Scholar 

  • Schulze CJ, Donia MS, Siqueira-Neto JL, Ray D, Raskatov JA, Green RE, Linington RG (2015) Genome-directed lead discovery: biosynthesis, structure elucidation, and biological evaluation of two families of polyene macrolactams against Trypanosoma brucei. ACS Chem Biol 10(10):2373–2381. https://doi.org/10.1021/acschembio.5b00308

    Article  Google Scholar 

  • Shanmuganathan B, Sathya S, Balasubramaniam B, Balamurugan K, Devi KP (2019) Amyloid-β induced neuropathological actions are suppressed by Padina gymnospora (Phaeophyceae) and its active constituent α-bisabolol in Neuro2a cells and transgenic Caenorhabditis elegans Alzheimer's model. Nitric Oxide 91:52–66. https://doi.org/10.1016/j.niox.2019.07.009

    Article  Google Scholar 

  • Sim CM, Hungerford NL, Krenske EH, Pierens GK, Andrews KT, Skinner-Adams TS, Garson MJ (2020) A Sesquiterpene isonitrile with a new tricyclic skeleton from the indo-Pacific nudibranch Phyllidiella pustulosa: spectroscopic and computational studies, vol 73. CSIRO Publishing, p 129

    Google Scholar 

  • Simmons TL, Engene N, Ureña LD, Romero LI, Ortega-Barría E, Gerwick L, Gerwick WH (2008) Viridamides A and B, lipodepsipeptides with antiprotozoal activity from the marine cyanobacterium Oscillatoria nigro-viridis. J Nat Prod 71(9):1544–1550. https://doi.org/10.1021/np800110e

    Article  Google Scholar 

  • Singh C, Srivastav NC, Puri SK (2002) In vivo active antimalarial isonitriles. Bioorg Med Chem Lett 12(17):2277–2279. https://doi.org/10.1016/s0960-894x(02)00457-2

    Article  Google Scholar 

  • Smyrniotopoulos V, Merten C, Kaiser M, Tasdemir D (2017) Bifurcatriol, a new antiprotozoal acyclic Diterpene from the Brown alga Bifurcaria bifurcata. Mar Drugs 15(8). https://doi.org/10.3390/md15080245

  • Snyder DE, Meyer J, Zimmermann AG, Qiao M, Gissendanner SJ, Cruthers LR, Young DR (2007) Preliminary studies on the effectiveness of the novel pulicide, spinosad, for the treatment and control of fleas on dogs. Vet Parasitol 150(4):345–351. https://doi.org/10.1016/j.vetpar.2007.09.011

    Article  Google Scholar 

  • Soares DC, Szlachta MM, Teixeira VL, Soares AR, Saraiva EM (2016) The Brown Alga Stypopodium zonale (Dictyotaceae): a potential source of anti-Leishmania drugs. Mar Drugs 14(9). https://doi.org/10.3390/md14090163

  • Spavieri J, Allmendinger A, Kaiser M, Itoe MA, Blunden G, Mota MM, Tasdemir D (2013) Assessment of dual life stage antiplasmodial activity of british seaweeds. Mar Drugs 11(10):4019–4034. https://doi.org/10.3390/md11104019

    Article  Google Scholar 

  • Steverding D, Wang X, Potts BC, Palladino MA (2012) Trypanocidal activity of β-lactone-γ-lactam proteasome inhibitors. Planta Med 78(2):131–134. https://doi.org/10.1055/s-0031-1280315

    Article  Google Scholar 

  • Stolze SC, Deu E, Kaschani F, Li N, Florea BI, Richau KH, Kaiser M (2012) The antimalarial natural product symplostatin 4 is a nanomolar inhibitor of the food vacuole falcipains. Chem Biol 19(12):1546–1555. https://doi.org/10.1016/j.chembiol.2012.09.020

    Article  Google Scholar 

  • Suntornchashwej S, Suwanborirux K, Koga K, Isobe M (2007) Malyngamide X: the first (7R)-lyngbic acid that connects to a new tripeptide backbone from the Thai sea hare Bursatella leachii. Chem Asian J 2(1):114–122. https://doi.org/10.1002/asia.200600219

    Article  Google Scholar 

  • Sweeney-Jones AM, Gagaring K, Antonova-Koch J, Zhou H, Mojib N, Soapi K, Kubanek J (2020) Antimalarial peptide and polyketide natural products from the Fijian marine cyanobacterium Moorea producens. Mar Drugs 18(3). https://doi.org/10.3390/md18030167

  • Takahashi H, Iwasaki A, Kurisawa N, Suzuki R, Jeelani G, Matsubara T, Suenaga K (2021) Motobamide, an antitrypanosomal cyclic peptide from a Leptolyngbya sp, marine cyanobacterium. J Nat Prod 84(5):1649–1655. https://doi.org/10.1021/acs.jnatprod.1c00234

    Article  Google Scholar 

  • Tan LT, Phyo MY (2020) Marine cyanobacteria: a source of Lead compounds and their clinically-relevant molecular targets. Molecules 25(9). https://doi.org/10.3390/molecules25092197

  • Tasdemir D, Topaloglu B, Perozzo R, Brun R, O'Neill R, Carballeira NM, Rüedi P (2007) Marine natural products from the Turkish sponge Agelas oroides that inhibit the enoyl reductases from plasmodium falciparum, mycobacterium tuberculosis and Escherichia coli. Bioorg Med Chem 15(21):6834–6845. https://doi.org/10.1016/j.bmc.2007.07.032

    Article  Google Scholar 

  • Teixeira VL, Lima JCR, Lechuga GC, Ramos CJB, Bourguignon SC (2019) Natural products from marine red and brown algae against Trypanosoma cruzi. Rev Bras 29(6)

    Google Scholar 

  • Thomas SAL, von Salm JL, Clark S, Ferlita S, Nemani P, Azhari A, Baker BJ (2018) Keikipukalides, furanocembrane diterpenes from the Antarctic Deep Sea Octocoral Plumarella delicatissima. J Nat Prod 81(1):117–123. https://doi.org/10.1021/acs.jnatprod.7b00732

    Article  Google Scholar 

  • Tiwari N, Gedda MR, Tiwari VK, Singh SP, Singh RK (2018) Limitations of current therapeutic options, possible drug targets and scope of natural products in control of Leishmaniasis. Mini Rev Med Chem 18(1):26–41. https://doi.org/10.2174/1389557517666170425105129

    Article  Google Scholar 

  • Topcu G, Aydogmus Z, Imre S, Gören AC, Pezzuto JM, Clement JA, Kingston DG (2003) Brominated sesquiterpenes from the red alga Laurencia obtusa. J Nat Prod 66(11):1505–1508. https://doi.org/10.1021/np030176p

    Article  Google Scholar 

  • Torgerson PR, Devleesschauwer B, Praet N, Speybroeck N, Willingham AL, Kasuga F, de Silva N (2015) World Health Organization estimates of the global and regional disease burden of 11 foodborne parasitic diseases, 2010: a data synthesis. PLoS Med 12(12):e1001920. https://doi.org/10.1371/journal.pmed.1001920

    Article  Google Scholar 

  • Torres-Mendoza D, Coronado LM, Pineda LM, Guzmán HM, Dorrestein PC, Spadafora C, Gutiérrez M (2018) Pumilacidins from the Octocoral-associated Bacillus sp. DT001 display anti-proliferative effects in plasmodium falciparum. Molecules 23(9). https://doi.org/10.3390/molecules23092179

  • Tripathi A, Puddick J, Prinsep MR, Rottmann M, Tan LT (2010) Lagunamides A and B: cytotoxic and antimalarial cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 73(11):1810–1814. https://doi.org/10.1021/np100442x

    Article  Google Scholar 

  • Tripathi A, Puddick J, Prinsep MR, Rottmann M, Chan KP, Chen DY, Tan LT (2011) Lagunamide C, a cytotoxic cyclodepsipeptide from the marine cyanobacterium Lyngbya majuscula. Phytochemistry 72(18):2369–2375. https://doi.org/10.1016/j.phytochem.2011.08.019

    Article  Google Scholar 

  • Uchiyama N, Kabututu Z, Kubata BK, Kiuchi F, Ito M, Nakajima-Shimada J, Urade Y (2005) Antichagasic activity of komaroviquinone is due to generation of reactive oxygen species catalyzed by Trypanosoma cruzi old yellow enzyme. Antimicrob Agents Chemother 49(12):5123–5126. https://doi.org/10.1128/aac.49.12.5123-5126.2005

    Article  Google Scholar 

  • Umehara M, Negishi T, Tashiro T, Nakao Y, Kimura J (2012) Structure-related cytotoxic activity of derivatives from kulokekahilide-2, a cyclodepsipeptide in Hawaiian marine mollusk. Bioorg Med Chem Lett 22(24):7422–7425. https://doi.org/10.1016/j.bmcl.2012.10.058

    Article  Google Scholar 

  • Veiga-Santos P, Pelizzaro-Rocha KJ, Santos AO, Ueda-Nakamura T, Filho BPD, Silva SO, Nakamura CV (2010) In vitro anti-trypanosomal activity of elatol isolated from red seaweed Laurencia dendroidea. Parasitology 137(11):1661–1670

    Google Scholar 

  • Vining OB, Medina RA, Mitchell EA, Videau P, Li D, Serrill JD, McPhail KL (2015) Depsipeptide companeramides from a Panamanian marine cyanobacterium associated with the coibamide producer. J Nat Prod 78(3):413–420. https://doi.org/10.1021/np5007907

    Article  Google Scholar 

  • Wang J, Bourguet-Kondracki ML, Longeon A, Dubois J, Valentin A, Copp BR (2011) Chemical and biological explorations of the electrophilic reactivity of the bioactive marine natural product halenaquinone with biomimetic nucleophiles. Bioorg Med Chem Lett 21(4):1261–1264. https://doi.org/10.1016/j.bmcl.2010.12.056

    Article  Google Scholar 

  • Wang J, Pearce AN, Chan ST, Taylor RB, Page MJ, Valentin A, Copp BR (2016) Biologically active acetylenic amino alcohol and N-hydroxylated 1,2,3,4-Tetrahydro-β-carboline constituents of the New Zealand ascidian Pseudodistoma opacum. J Nat Prod 79(3):607–610. https://doi.org/10.1021/acs.jnatprod.5b00770

    Article  Google Scholar 

  • Wei X, Nieves K, Rodríguez AD (2010) Neopetrosiamine A, biologically active bis-piperidine alkaloid from the Caribbean Sea sponge Neopetrosia proxima. Bioorg Med Chem Lett 20(19):5905–5908. https://doi.org/10.1016/j.bmcl.2010.07.084

    Article  Google Scholar 

  • Williams DE, Andersen RJ (2020) Biologically active marine natural products and their molecular targets discovered using a chemical genetics approach. Nat Prod Rep 37(5):617–633. https://doi.org/10.1039/c9np00054b

    Article  Google Scholar 

  • Wong IL, Chow LM (2006) The role of Leishmania enriettii multidrug resistance protein 1 (LeMDR1) in mediating drug resistance is iron-dependent. Mol Biochem Parasitol 150(2):278–287. https://doi.org/10.1016/j.molbiopara.2006.08.014

    Article  Google Scholar 

  • Wright AD, Goclik E, König GM, Kaminsky R (2002) Lepadins D-F: antiplasmodial and antitrypanosomal decahydroquinoline derivatives from the tropical marine tunicate Didemnum sp. J Med Chem 45(14):3067–3072. https://doi.org/10.1021/jm0110892

    Article  Google Scholar 

  • Wright AE, Botelho JC, Guzmán E, Harmody D, Linley P, McCarthy PJ, Reed JK (2007) Neopeltolide, a macrolide from a lithistid sponge of the family Neopeltidae. J Nat Prod 70(3):412–416. https://doi.org/10.1021/np060597h

    Article  Google Scholar 

  • Wu QP, **e YZ, Deng Z, Li XM, Yang W, Jiao CW, Yang BB (2012) Ergosterol peroxide isolated from Ganoderma lucidum abolishes microRNA miR-378-mediated tumor cells on chemoresistance. PLoS One 7(8):e44579. https://doi.org/10.1371/journal.pone.0044579

    Article  Google Scholar 

  • Yamada M et al (2009) Zamamidine C, 3, 4-dihydro-6-hydroxy-10, 11-epoxymanzamine A, and 3, 4-dihydromanzamine J N-oxide, new manzamine alkaloids from sponge Amphimedon sp. Tetrahedron 65:2313–2317

    Google Scholar 

  • Yang F, Gan JH, Liu XY, Lin HW (2014) Scalarane sesterterpenes from the Paracel Islands marine sponge Hyrtios sp. Nat Prod Commun 9(6):763–764

    Google Scholar 

  • Yang F, Wang RP, Xu B, Yu HB, Ma GY, Wang GF, Lin HW (2016) New antimalarial norterpene cyclic peroxides from **sha Islands sponge Diacarnus megaspinorhabdosa. Bioorg Med Chem Lett 26(8):2084–2087. https://doi.org/10.1016/j.bmcl.2016.02.070

    Article  Google Scholar 

  • Yoo E, Schulze CJ, Stokes BH, Onguka O, Yeo T, Mok S, Bogyo M (2020) The antimalarial natural product Salinipostin A identifies essential α/β serine hydrolases involved in lipid metabolism in P. falciparum Parasites. Cell Chem Biol 27(2):143–157.e145. https://doi.org/10.1016/j.chembiol.2020.01.001

    Article  Google Scholar 

  • Zafrir Ilan E, Torres MR, Prudhomme J, Le Roch K, Jensen PR, Fenical W (2013) Farnesides A and B, sesquiterpenoid nucleoside ethers from a marine-derived Streptomyces sp., strain CNT-372 from Fiji. J Nat Prod 76(9):1815–1818. https://doi.org/10.1021/np400351t

    Article  Google Scholar 

  • Zhang H, Zou J, Yan X, Chen J, Cao X, Wu J, Wang T (2021) Marine-derived macrolides 1990-2020: an overview of chemical and biological diversity. Mar Drugs 19(4). https://doi.org/10.3390/md19040180

  • Zhang X, Ma YB, He XF, Li TZ, Geng CA, Su LH, Chen JJ (2022) Artemyrianosins A-J, cytotoxic germacrane-type sesquiterpene lactones from Artemisia myriantha. Nat Prod Bioprospect 12(1):16. https://doi.org/10.1007/s13659-022-00340-5

    Article  Google Scholar 

  • Zhang M, Zhang Q, Zhang Q, Cui X, Zhu L (2023a) Promising antiparasitic natural and synthetic products from marine invertebrates and microorganisms. Mar Drugs 21(2). https://doi.org/10.3390/md21020084

  • Zhang Q, Lin R, Yang J, Zhao J, Li H, Liu K, Zhao H (2023b) Transcriptome analysis reveals that C17 Mycosubtilin antagonizes Verticillium dahliae by interfering with multiple functional pathways of fungi. Biology (Basel) 12(4). https://doi.org/10.3390/biology12040513

  • Zidan SAH, Abdelhamid RA, Alian A, Fouad MA, Matsunami K, Orabi MAA (2022) Diterpenes and sterols from the Red Sea soft coral Sarcophyton trocheliophorum and their cytotoxicity and anti-leishmanial activities. J Asian Nat Prod Res 24(8):794–802. https://doi.org/10.1080/10286020.2021.1979522

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Key Research and Development Program of China (grant no. 2021YFC2300800 and 2021YFC2300803), the National Natural Science Foundation of China (grant no. 31960203 and 32360244), the Opening Project of Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry (grant no. GXMNPCBC-2022-03), and the State Key Laboratory for Reproductive Regulation and Breeding of Grassland Livestock (grant no. 2021KF0301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheng, W., Huang, Y., Gao, H., Bold, B., Zhang, T., Yang, D. (2024). Marine Natural Products as Novel Treatments for Parasitic Diseases. In: Handbook of Experimental Pharmacology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/164_2024_712

Download citation

  • DOI: https://doi.org/10.1007/164_2024_712

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics

Navigation