Chitosan Polymeric Micelles as Oral Delivery Platform of Hydrophobic Anticancer Drugs

  • Chapter
  • First Online:
Chitosan for Biomaterials IV

Part of the book series: Advances in Polymer Science ((POLYMER,volume 288))

Abstract

Oral drug administration is the most common and preferred route of administration for both patients and doctors. However, some drugs, as the case of hydrophobic anticancer drugs, cannot be administered orally since they are hampered by the physiological and biological barriers of the gastrointestinal tract. Thus, the use of nanotechnology, particularly, the use of polymeric micelles has received great attention to overcome these limitations and achieve a better therapeutic outcome. Polymeric micelles have the ability to protect the drug from the harsh environment of the gastrointestinal tract, improving the stability and solubility of the drug for an enhanced oral bioavailability. Chitosan is a natural polymer with very interesting biological properties and has received growing interest to produce polymeric micelles to encapsulate hydrophobic drugs. The limitations of the oral administration and the mechanisms of the intestinal absorption, as well as the chitosan modifications to produce polymeric micelles are reviewed in this chapter. Finally, recently developed chitosan-based polymeric micelles were included in the review, with a focus on the delivery of anticancer drugs for oral chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 199.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Organization W.W.H. (2021) Cancer. [cited 2021]

    Google Scholar 

  2. Silva DS et al (2017) Self-aggregates of 3, 6-O,O′-dimyristoylchitosan derivative are effective in enhancing the solubility and intestinal permeability of camptothecin. Carbohydr Polym 177:178–186

    Google Scholar 

  3. Khafagy E-S, Morishita M (2012) Oral biodrug delivery using cell-penetrating peptide. Adv Drug Deliv Rev 64(6):531–539

    Article  CAS  Google Scholar 

  4. He R, Yin C (2017) Trimethyl chitosan based conjugates for oral and intravenous delivery of paclitaxel. Acta Biomater 53:355–366

    Article  CAS  PubMed  Google Scholar 

  5. Wang X et al (2019) Preparation and evaluation of carboxymethyl chitosan-rhein polymeric micelles with synergistic antitumor effect for oral delivery of paclitaxel. Carbohydr Polym 206:121–131

    Article  CAS  PubMed  Google Scholar 

  6. Yuan H et al (2011) Stearic acid-g-chitosan polymeric micelle for oral drug delivery: in vitro transport and in vivo absorption. Mol Pharm 8(1):225–238

    Article  CAS  PubMed  Google Scholar 

  7. Sood A, Panchagnula R (2001) Peroral route: an opportunity for protein and peptide drug delivery. Chem Rev 101(11):3275–3304

    Article  CAS  PubMed  Google Scholar 

  8. Dahmani FZ et al (2012) Enhanced oral bioavailability of paclitaxel in pluronic/LHR mixed polymeric micelles: preparation, in vitro and in vivo evaluation. Eur J Pharm Sci 47(1):179–189

    Article  CAS  PubMed  Google Scholar 

  9. Pond SM, Tozer TN (1984) First-pass elimination basic concepts and clinical consequences. Clin Pharmacokinet 9(1):1–25

    Article  CAS  PubMed  Google Scholar 

  10. Thanki K et al (2013) Oral delivery of anticancer drugs: challenges and opportunities. J Control Release 170(1):15–40

    Article  CAS  PubMed  Google Scholar 

  11. Ensign LM, Cone R, Hanes J (2012) Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev 64(6):557–570

    Article  CAS  PubMed  Google Scholar 

  12. Palazzo C et al (2017) Mucoadhesive properties of low molecular weight chitosan-or glycol chitosan-and corresponding thiomer-coated poly (isobutylcyanoacrylate) core-shell nanoparticles. Eur J Pharm Biopharm 117:315–323

    Article  CAS  PubMed  Google Scholar 

  13. des Rieux A et al (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 116(1):1–27

    Article  CAS  PubMed  Google Scholar 

  14. Kammona O, Kiparissides C (2012) Recent advances in nanocarrier-based mucosal delivery of biomolecules. J Control Release 161(3):781–794

    Article  CAS  PubMed  Google Scholar 

  15. Su F-Y et al (2012) Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery. Biomaterials 33(9):2801–2811

    Article  CAS  PubMed  Google Scholar 

  16. Wang J et al (2017) Mechanism of surface charge triggered intestinal epithelial tight junction opening upon chitosan nanoparticles for insulin oral delivery. Carbohydr Polym 157:596–602

    Article  CAS  PubMed  Google Scholar 

  17. Shakweh M, Ponchel G, Fattal E (2004) Particle uptake by Peyer’s patches: a pathway for drug and vaccine delivery. Expert Opin Drug Deliv 1(1):141–163

    Article  CAS  PubMed  Google Scholar 

  18. Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422(6927):37–44

    Google Scholar 

  19. Yu H et al (2021) A novel nanohybrid antimicrobial based on chitosan nanoparticles and antimicrobial peptide microcin J25 with low toxicity. Carbohydr Polym 253:117309

    Article  CAS  PubMed  Google Scholar 

  20. Yu Z et al (2018) Silica in situ enhanced PVA/chitosan biodegradable films for food packages. Carbohydr Polym 184:214–220

    Article  CAS  PubMed  Google Scholar 

  21. Dimida S et al (2017) Effects of genipin concentration on cross-linked chitosan scaffolds for bone tissue engineering: structural characterization and evidence of biocompatibility features. Int J Polymer Sci 2017

    Google Scholar 

  22. Sahariah P, Masson M (2017) Antimicrobial chitosan and chitosan derivatives: a review of the structure–activity relationship. Biomacromolecules 18(11):3846–3868

    Article  CAS  PubMed  Google Scholar 

  23. Trickler W, Nagvekar A, Dash AK (2008) A novel nanoparticle formulation for sustained paclitaxel delivery. AAPS PharmSciTech 9(2):486–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Silva D, Almeida A, Azevedo C, Campana-Filho SP, Sarmentob B (2018) Synthesis and applications of amphiphilic chitosan derivatives for drug delivery applications. In: Nanoparticles in life sciences and biomedicine, p 45

    Google Scholar 

  25. Chen Z et al (2017) Blood coagulation evaluation of N-alkylated chitosan. Carbohydr Polym 173:259–268

    Article  CAS  PubMed  Google Scholar 

  26. Piegat A et al (2021) Antibacterial activity of N,O-acylated chitosan derivative. Polymers 13(1):107

    Article  CAS  Google Scholar 

  27. Almeida A et al (2018) Synthesis and characterization of chitosan-grafted-polycaprolactone micelles for modulate intestinal paclitaxel delivery. Drug Deliv Transl Res 8(2):387–397

    Article  CAS  PubMed  Google Scholar 

  28. Silva DS et al (2017) Synthesis and characterization of 3, 6-O,O′-dimyristoyl chitosan micelles for oral delivery of paclitaxel. Colloids Surf B Biointerfaces 152:220–228

    Google Scholar 

  29. Silva DS et al (2018) N-(2-hydroxy)-propyl-3-trimethylammonium, o-mysristoyl chitosan enhances the solubility and intestinal permeability of anticancer curcumin. Pharmaceutics 10(4):245

    Article  CAS  PubMed Central  Google Scholar 

  30. Almeida A et al (2020) Novel amphiphilic chitosan micelles as carriers for hydrophobic anticancer drugs. Mater Sci Eng C:110920

    Google Scholar 

  31. Mi Y et al (2020) New synthetic chitosan derivatives bearing benzenoid/heterocyclic moieties with enhanced antioxidant and antifungal activities. Carbohydr Polym 249:116847

    Article  CAS  PubMed  Google Scholar 

  32. Zhao D et al (2018) Biomedical applications of chitosan and its derivative nanoparticles. Polymers 10(4):462

    Article  PubMed Central  CAS  Google Scholar 

  33. Bromberg L (2001) Hydrophobically modified polyelectrolytes and polyelectrolyte block copolymers. In: Handbook of surfaces and interfaces of materials. Elsevier, Amsterdam, pp 369–404

    Chapter  Google Scholar 

  34. Quiñones JP, Peniche H, Peniche C (2018) Chitosan based self-assembled nanoparticles in drug delivery. Polymers 10(3):235

    Article  PubMed Central  CAS  Google Scholar 

  35. Deshmukh AS et al (2017) Polymeric micelles: basic research to clinical practice. Int J Pharm 532(1):249–268

    Article  CAS  PubMed  Google Scholar 

  36. Simões SM et al (2015) Polymeric micelles for oral drug administration enabling locoregional and systemic treatments. Expert Opin Drug Deliv 12(2):297–318

    Article  PubMed  CAS  Google Scholar 

  37. Gaucher G et al (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 109(1–3):169–188

    Article  CAS  PubMed  Google Scholar 

  38. Bromberg L (2008) Polymeric micelles in oral chemotherapy. J Control Release 128(2):99–112

    Article  CAS  PubMed  Google Scholar 

  39. Raefsky E, Spigel DR, Infante JR, Bendell JC, Jones SF, Lipman AJ, Trent D, Kawamura S, Greco FA, Hainsworth JD, Burris HA (2011) Phase II study of NK012 in relapsed small cell lung cancer. J Clin Oncol 29(15_suppl):7079–7079

    Google Scholar 

  40. Schneider M et al (2016) A paired comparison between glioblastoma “stem cells” and differentiated cells. Int J Cancer 138(7):1709–1718

    Article  CAS  PubMed  Google Scholar 

  41. Fujiwara Y, Mukai H, Saeki T, Ro J, Lin YC, Nagai SE, Lee KS, Watanabe J, Ohtani S, Kim SB, Kuroi K, Tsugawa K, Tokuda Y, Iwata H, Park YH, Yang Y, Nambu Y (2019) A multi-national, randomised, open-label, parallel, phase III non-inferiority study comparing NK105 and paclitaxel in metastatic or recurrent breast cancer patients. Br J Cancer 120(5):475–480

    Google Scholar 

  42. Schluep T, Hwang J, Cheng J, Heidel JD, Bartlett DW, Hollister B, Davis ME (2006) Preclinical efficacy of the camptothecin-polymer conjugate IT-101 in multiple cancer models. Clin Cancer Res 12(5):1606–1614

    Google Scholar 

  43. Schluep T, Cheng J, Khin KT, Davis ME (2006) Pharmacokinetics and biodistribution of the camptothecin–polymer conjugate IT-101 in rats and tumor-bearing mice. Cancer Chemother Pharmacol 57(5):654–662

    Google Scholar 

  44. Feng S-S, Chien S (2003) Chemotherapeutic engineering: application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem Eng Sci 58(18):4087–4114

    Article  CAS  Google Scholar 

  45. Spencer CM, Faulds D (1994) Paclitaxel. Drugs 48(5):794–847

    Article  CAS  PubMed  Google Scholar 

  46. Xu W et al (2015) Cysteine modified and bile salt based micelles: preparation and application as an oral delivery system for paclitaxel. Colloids Surf B Biointerfaces 128:165–171

    Article  CAS  PubMed  Google Scholar 

  47. Fonte P et al (2015) Polymer-based nanoparticles for oral insulin delivery: revisited approaches. Biotechnol Adv 33(6):1342–1354

    Article  CAS  PubMed  Google Scholar 

  48. Yang T et al (2020) L-carnitine conjugated chitosan-stearic acid polymeric micelles for improving the oral bioavailability of paclitaxel. Drug Deliv 27(1):575–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Du X et al (2020) Polylysine and cysteine functionalized chitosan nanoparticle as an efficient platform for oral delivery of paclitaxel. Carbohydr Polym 229:115484

    Article  CAS  PubMed  Google Scholar 

  50. Maheshwari RK et al (2006) Multiple biological activities of curcumin: a short review. Life Sci 78(18):2081–2087

    Article  CAS  PubMed  Google Scholar 

  51. Lopresti AL, Hood SD, Drummond PD (2012) Multiple antidepressant potential modes of action of curcumin: a review of its anti-inflammatory, monoaminergic, antioxidant, immune-modulating and neuroprotective effects. J Psychopharmacol 26(12):1512–1524

    Article  CAS  PubMed  Google Scholar 

  52. Guo LD et al (2013) Curcumin inhibits proliferation and induces apoptosis of human colorectal cancer cells by activating the mitochondria apoptotic pathway. Phytother Res 27(3):422–430

    Article  CAS  PubMed  Google Scholar 

  53. Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23(1/A):363–398

    CAS  PubMed  Google Scholar 

  54. Woraphatphadung T et al (2018) Development of chitosan-based pH-sensitive polymeric micelles containing curcumin for colon-targeted drug delivery. AAPS PharmSciTech 19(3):991–1000

    Article  CAS  PubMed  Google Scholar 

  55. Chen C-H et al (2018) Mutlifunctional nanoparticles prepared from arginine-modified chitosan and thiolated fucoidan for oral delivery of hydrophobic and hydrophilic drugs. Carbohydr Polym 193:163–172

    Article  CAS  PubMed  Google Scholar 

  56. Raja MA et al (2016) Self-assembled nanoparticles based on amphiphilic chitosan derivative and arginine for oral curcumin delivery. Int J Nanomedicine 11:4397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu LF et al (2000) Mechanism of action of camptothecin. Ann N Y Acad Sci 922(1):1–10

    Article  CAS  PubMed  Google Scholar 

  58. Mu Y et al (2019) Multifunctional quercetin conjugated chitosan nano-micelles with P-gp inhibition and permeation enhancement of anticancer drug. Carbohydr Polym 203:10–18

    Article  CAS  PubMed  Google Scholar 

  59. Kumar R et al (2020) Polymeric micelles based on amphiphilic oleic acid modified carboxymethyl chitosan for oral drug delivery of bcs class iv compound: intestinal permeability and pharmacokinetic evaluation. Eur J Pharm Sci 153:105466

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financed by FCT – Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project “Institute for Research and Innovation in Health Sciences” (UID/BIM/04293/2019). Andreia Almeida (SFRH/BD/118721/2016) acknowledges Fundação para a Ciência e a Tecnologia (FCT), Portugal, for financial support.

Declaration of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this work.

Credit Authorship Contribution Statement

Andreia Almeida: Conceptualization, Writing – original draft; Bruno Sarmento: Writing – review & editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Sarmento .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Almeida, A., Sarmento, B. (2021). Chitosan Polymeric Micelles as Oral Delivery Platform of Hydrophobic Anticancer Drugs. In: Jayakumar, R., Prabaharan, M. (eds) Chitosan for Biomaterials IV. Advances in Polymer Science, vol 288. Springer, Cham. https://doi.org/10.1007/12_2021_94

Download citation

Publish with us

Policies and ethics

Navigation