Enhanced Topical Delivery of Drugs to the Eye Using Chitosan Based Systems

  • Chapter
  • First Online:
Chitosan for Biomaterials IV

Abstract

Topical administration is considered to be the favored route for ocular drug delivery by virtue of drug penetration into the underlying layers of eye. Targeted delivery of drugs to the ocular tissues especially at the posterior segment of eye is hindered predominantly. Long-term maintenance of therapeutic level of drugs in the ocular tissue (both anterior/posterior segments) is the major specific challenge faced by researchers. Development of novel pharmaceutical formulations may overcome these barriers and imparts therapeutic levels in eye. In this regimen chitosan due to its avoidance of toxicity, biocompatibility, bioadhesion, and permeability-enhancing properties is widely used in ocular topical drug delivery. Chitosan facilitates the transport of drugs to the inner eye or accumulation into the corneal/conjunctival epithelia due to its mucoadhesion and permeation-enhancing properties. In this chapter will be provided insights toward the different ocular barriers, conventional and novel chitosan based ocular topical drug delivery systems. Special emphasis will be made toward the development of chitosan based topical delivery systems for ocular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Willoughby CE, Ponzin D, Ferrari S, Lobo A, Landau K, Omidi Y (2010) Anatomy and physiology of the human eye: effects of mucopolysaccharidoses disease on structure and function- a review. Clin Experiment Ophthalmol 2010(38):2–11

    Article  Google Scholar 

  2. Nayak K, Misra M (2018) A review on recent drug delivery systems for posterior segment of eye. Biomed Pharmacother 107:1564–1582

    Article  CAS  PubMed  Google Scholar 

  3. Lin S, Ge C, Wang D, **e Q, Wu B, Wang J, Nan K, Zheng Q, Chen W (2019) Overcoming the anatomical and physiological barriers in topical eye surface medication using a peptide-decorated polymeric micelle. ACS Appl Mater Interfaces 11(43):39603–39612

    Article  CAS  PubMed  Google Scholar 

  4. Kwatra D, Mitra AK (2013) Drug delivery in ocular diseases: barriers and strategies. World J Pharmacol 2(4):78–83

    Article  Google Scholar 

  5. Bachu RD, Chowdhury P, Al-Saedi ZHF, Karla PK, Boddu SHS (2018) Ocular drug delivery barriers-role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics 10:28

    Article  PubMed Central  CAS  Google Scholar 

  6. Palani S, Joseph NM, Goda CC, Zachariah A, Ayenew Z (2010) Ocular drug delivery a review. IJPSR 1(3):1–11

    Google Scholar 

  7. Rodrigues S, Dionísio M, López CR, Grenha A (2012) Biocompatibility of chitosan carriers with application in drug delivery. J Funct Biomater 3:615–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. He P, Davis SS, Illum L (1998) In vitro evaluation of the mucoadhesive properties of chitosan microspheres. Int J Pharm 166:75–88

    Article  CAS  Google Scholar 

  9. Dhawan S, Singla AK, Sinha VR (2004) Evaluation of mucoadhesive properties of chitosan microspheres prepared by different methods. AAPS PharmSciTech 5:122–128

    Article  PubMed Central  Google Scholar 

  10. Lehr CM, Bouwstra JA, Schacht EH, Junginger HE (1992) In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharm 78:43–48

    Article  CAS  Google Scholar 

  11. George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan – a review. J Control Release 114:1–14

    Article  CAS  PubMed  Google Scholar 

  12. Barbu E, Verestiuc L, Nevell TG, Tsibouklis J (2006) Polymeric materials for ophthalmic drug delivery: trends and perspectives. J Mater Chem:3439–3443

    Google Scholar 

  13. Jacobsen J, Meng-Lund E, Muff-Westergaard C et al (2014) A mechanistic based approach for enhancing buccal mucoadhesion of chitosan. Int J Pharm 461:280–285

    Article  PubMed  CAS  Google Scholar 

  14. Nafee NA, Ismail FA, Boraie NA, Mortada LM (2004) Mucoadhesive delivery systems. I. Evaluation of mucoadhesive polymers for buccal tablet formulation. Drug Dev Ind Pharm 30:985–993

    Article  CAS  PubMed  Google Scholar 

  15. Greaves JL, Wilson CG (1993) Treatment of diseases of the eye with mucoadhesive delivery systems. Adv Drug Deliv Rev 11:349–383

    Article  CAS  Google Scholar 

  16. Bhavsar C, Momin M, Gharat S, Omri A (2017) Functionalized and graft copolymers of chitosan and its pharmaceutical applications. Expert Opin Drug Deliv 14:1189–1204

    Article  CAS  PubMed  Google Scholar 

  17. Ways TMM, Lau WM, Khutoryanskiy VV (2018) Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers 10:267–304

    Article  CAS  Google Scholar 

  18. Chopra S, Mahdi S, Kaur J et al (2006) Advances and potential applications of chitosan derivatives as mucoadhesive biomaterials in modern drug delivery. J Pharm Pharmacol 58:1021–1032

    Article  CAS  PubMed  Google Scholar 

  19. Werle M, Bernkop-Schnürch A (2008) Thiolated chitosans: useful excipients for oral drug delivery. J Pharm Pharmacol 60:273–281

    Article  CAS  PubMed  Google Scholar 

  20. Bernkop-Schnürch A, Guggi D, Pinter Y (2004) Thiolated chitosans: development and in vitro evaluation of a mucoadhesive, permeation enhancing oral drug delivery system. J Control Release 94:177–186

    Article  PubMed  CAS  Google Scholar 

  21. Bernkop-Schnürch A (2005) Thiomers: a new generation of mucoadhesive polymers. Adv Drug Deliv Rev 57:1569–1582

    Article  PubMed  CAS  Google Scholar 

  22. **tapattanakit A, Junyaprasert VB, Kissel T (2009) The role of mucoadhesion of trimethyl chitosan and PEGylated trimethyl chitosan nanocomplexes in insulin uptake. J Pharm Sci 98:4818–4848

    Article  CAS  PubMed  Google Scholar 

  23. Muzzarelli RAA, Tanfani F (1985) The N-permethylation of chitosan and the preparation of N-trimethyl chitosan iodide. Carbohydr Polym 5:297–307

    Article  CAS  Google Scholar 

  24. Karavasili C, Katsamenis OL, Bouropoulos N et al (2014) Preparation and characterization of bioadhesive microparticles comprised of low degree of quaternization trimethylated chitosan for nasal administration: effect of concentration and molecular weight. Langmuir 30:12337–12344

    Article  CAS  PubMed  Google Scholar 

  25. Agarwal S, Aggarwal S (2015) Mucoadhesive polymeric platform for drug delivery; a comprehensive review. Curr Drug Deliv 12:139–156

    Article  CAS  PubMed  Google Scholar 

  26. Menzel C, Hauser M, Frey A et al (2019) Covalently binding mucoadhesive polymers: N-hydroxysuccinimide grafted polyacrylates. Eur J Pharm Biopharm 139:161–167

    Article  CAS  PubMed  Google Scholar 

  27. Eshel-Green T, Bianco-Peled H (2016) Mucoadhesive acrylated block copolymers micelles for the delivery of hydrophobic drugs. Colloids Surf B Biointerfaces 139:42–51

    Article  CAS  PubMed  Google Scholar 

  28. Eliyahu S, Aharon A, Bianco-Peled H (2018) Acrylated chitosan nanoparticles with enhanced mucoadhesion. Polymers 10:1–17

    Article  CAS  Google Scholar 

  29. Ryu JH, Choi JS, Park E et al (2020) Chitosan oral patches inspired by mussel adhesion. J Control Release 317:57–66

    Article  CAS  PubMed  Google Scholar 

  30. Bernkop-Schnürch A (2005) Mucoadhesive systems in oral drug delivery. Drug Discov Today Technol 2:83–87

    Article  PubMed  CAS  Google Scholar 

  31. Sigurdsson HH, Kirch J, Lehr CM (2013) Mucus as a barrier to lipophilic drugs. Int J Pharm 453:56–64

    Article  CAS  PubMed  Google Scholar 

  32. Ponchel G, Montisci MJ, Dembri A et al (1997) Mucoadhesion of colloidal particulate systems in the gastro-intestinal tract. Eur J Pharm Biopharm 44:25–31

    Article  CAS  Google Scholar 

  33. Khutoryanskiy VV (2011) Advances in mucoadhesion and mucoadhesive polymers. Macromol Biosci 11:748–764

    Article  CAS  PubMed  Google Scholar 

  34. Zhang X, Cheng H, Dong W et al (2018) Design and intestinal mucus penetration mechanism of core-shell nanocomplex. J Control Release 272:29–38

    Article  CAS  PubMed  Google Scholar 

  35. Nagarwal RC, Kant S, Singh PN et al (2009) Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release 136:2–13

    Article  CAS  PubMed  Google Scholar 

  36. Eljarrat-Binstock E, Orucov F, Aldouby Y et al (2008) Charged nanoparticles delivery to the eye using hydrogel iontophoresis. J Control Release 126:156–161

    Article  CAS  PubMed  Google Scholar 

  37. De M, Raviña M, Paolicelli P et al (2010) Chitosan-based nanostructures: a delivery platform for ocular therapeutics. Adv Drug Deliv Rev 62:100–117

    Article  CAS  Google Scholar 

  38. Schipper NG, Olsson S, Hoogstraate JA et al (1997) Chitosans as absorption enhancers for poorly absorbable drugs 2: mechanism of absorption enhancement. Pharm Res 14:923–929

    Article  CAS  PubMed  Google Scholar 

  39. Kotzé AF, Thanou MM, Lueben HL et al (1999) Enhancement of paracellular drug transport with highly quaternized N- trimethyl chitosan chloride in neutral environments: in vitro evaluation in intestinal epithelial cells (Caco-2). J Pharm Sci 88:253–257

    Article  PubMed  Google Scholar 

  40. Hamman JH, Schultz CM, Kotzé AF (2003) N-trimethyl chitosan chloride: optimum degree of quaternization for drug absorption enhancement across epithelial cells. Drug Dev Ind Pharm 29:161–172

    Article  CAS  PubMed  Google Scholar 

  41. Kotzé AR, Lueβen HL, de Leeuw BJ et al (1997) N-trimethyl chitosan chloride as a potential absorption enhancer across mucosal surfaces: in vitro evaluation in intestinal epithelial cells (Caco-2). Pharm Res 14:1197–1202

    Article  PubMed  Google Scholar 

  42. Kotzé AF, Lueßen HL, De Leeuw BJ et al (1998) Comparison of the effect of different chitosan salts and N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2). J Control Release 51:35–46

    Article  PubMed  Google Scholar 

  43. Natesan S, Krishnaswami V, Thekkila Veedu S, Pathayappurakkal Mohanan D et al (2019) Chitosan-based ocular drug delivery systems. In: Jana S, Jana S (eds) Functional chitosan. Springer, Singapore, pp 107–134

    Chapter  Google Scholar 

  44. Kirchhof S, Goepferich AM, Brandl FP (2015) Hydrogels in ophthalmic applications. Eur J Pharm Biopharm 95:227–238

    Article  CAS  PubMed  Google Scholar 

  45. Otero-Espinar FJ, Fernández-Ferreiro A, González-Barcia M et al (2018) Stimuli sensitive ocular drug delivery systems. In: Drug targeting and stimuli sensitive drug delivery systems. William Andrew Publishing, San Diego, pp 211–270

    Chapter  Google Scholar 

  46. Wu Y, Liu Y, Li X et al (2019) Research progress of in-situ gelling ophthalmic drug delivery system. Asian J Pharm Sci 14:1–15

    Article  PubMed  Google Scholar 

  47. Gratieri T, Martins G, Melani E et al (2010) A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery. Eur J Pharm Biopharm 75:186–193

    Article  CAS  PubMed  Google Scholar 

  48. Gratieri T, Martins G, De Freitas O et al (2011) Enhancing and sustaining the topical ocular delivery of fluconazole using chitosan solution and poloxamer/chitosan in situ forming gel. Eur J Pharm Biopharm 79:320–327

    Article  CAS  PubMed  Google Scholar 

  49. Cheng YH, Hung KH, Tsai TH et al (2014) Sustained delivery of latanoprost by thermosensitive chitosan–gelatin-based hydrogel for controlling ocular hypertension. Acta Biomater 10:4360–4366

    Article  CAS  PubMed  Google Scholar 

  50. Tsai CY, Woung LC, Yen JC et al (2016) Thermosensitive chitosan-based hydrogels for sustained release of ferulic acid on corneal wound healing. Carbohydr Polym 135:308–315

    Article  CAS  PubMed  Google Scholar 

  51. Ratemi E (2018) pH-responsive polymers for drug delivery applications. In: Stimuli responsive polymeric nanocarriers for drug delivery applications. Woodhead publishing series in biomaterials. Elsevier, Amsterdam, pp 121–141

    Chapter  Google Scholar 

  52. Berger J, Reist M, Mayer JM et al (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34

    Article  CAS  PubMed  Google Scholar 

  53. Hennink WE, van Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 54:13–36

    Article  CAS  PubMed  Google Scholar 

  54. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99

    Article  CAS  PubMed  Google Scholar 

  55. Rabea EI, Badawy MET, Stevens CV et al (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465

    Article  CAS  PubMed  Google Scholar 

  56. Campaniello D, Corbo MR (2010) Chitosan: a polysaccharide with antimicrobial action. In: Application of alternative food-preservation technologies to enhance food safety and stability. Bentham Science Publishers Ltd, Sharjah, pp 92–113

    Chapter  Google Scholar 

  57. Nagy A, Harrison A, Sabbani S et al (2011) Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action. Int J Nanomedicine 6:1833–1852

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Divya K, Vijayan S, George TK, Jisha MS (2017) Antimicrobial properties of chitosan nanoparticles: mode of action and factors affecting activity. Fibers Polym 18:221–230

    Article  CAS  Google Scholar 

  59. Kong M, Chen XG, **ng K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63

    Article  CAS  PubMed  Google Scholar 

  60. Helander I, von Wright A, Mattila-Sandholm TM (1997) Potential of lactic acid bacteria and novel antimicrobials against gram-negative bacteria. Trends Food Sci Technol 8:146–150

    Article  CAS  Google Scholar 

  61. Kong M, Chen XG, Liu CS et al (2008) Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. coli. Colloids Surf B Biointerfaces 65:197–202

    Article  CAS  PubMed  Google Scholar 

  62. Raafat D, Von Bargen K, Haas A, Sahl HG (2008) Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol 74:3764–3773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hassan MA, Omer AM, Abbas E et al (2018) Preparation, physicochemical characterization and antimicrobial activities of novel two phenolic chitosan Schiff base derivatives. Sci Rep 8:1–4

    Article  Google Scholar 

  64. Sahariah P, Masson M (2017) Antimicrobial chitosan and chitosan derivatives: a review of the structure–activity relationship. Biomacromolecules 18:3846–3868

    Article  CAS  PubMed  Google Scholar 

  65. Helander IM, Nurmiaho-Lassila EL, Ahvenainen R et al (2001) Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria. Int J Food Microbiol 71:235–244

    Article  CAS  PubMed  Google Scholar 

  66. Mao S, Sun W, Kissel T (2010) Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev 62:12–27

    Article  CAS  PubMed  Google Scholar 

  67. Yu H, Chen X, Lu T et al (2007) Poly(L-lysine)-graft-chitosan copolymers: synthesis characterization, and gene transfection effect. Biomacromolecules 8:1425–1435

    Article  CAS  PubMed  Google Scholar 

  68. Klausner EA, Zhang Z, Chapman RL et al (2010) Biomaterials ultrapure chitosan oligomers as carriers for corneal gene transfer. Biomaterials 31:1814–1820

    Article  CAS  PubMed  Google Scholar 

  69. Lee D, Mohapatra SS (2008) Chitosan nanoparticle-mediated gene transfer. Methods Mol Biol 433:127–140

    Article  CAS  PubMed  Google Scholar 

  70. Bernkop-Schnürch A, Dünnhaupt S (2012) Chitosan-based drug delivery systems. Eur J Pharm Biopharm 81:463–469

    Article  PubMed  CAS  Google Scholar 

  71. Martien R, Loretz B, Thaler M et al (2007) Chitosan–thioglycolic acid conjugate: an alternative carrier for oral nonviral gene delivery? J Biomed Mater Res A 82:1–9

    Article  PubMed  CAS  Google Scholar 

  72. Malmo J, Vårum KM, Strand SP (2011) Effect of chitosan chain architecture on gene delivery: comparison of self-branched and linear chitosans. Biomacromolecules 12:721–729

    Article  CAS  PubMed  Google Scholar 

  73. Varkouhi AK, Lammers T, Schiffelers RM et al (2011) Gene silencing activity of siRNA polyplexes based on biodegradable polymers. Eur J Pharm Biopharm 77:450–457

    Article  CAS  PubMed  Google Scholar 

  74. Malhotra M, Lane C, Tomaro-Duchesneau C et al (2011) A novel method for synthesizing PEGylated chitosan nanoparticles: strategy, preparation, and in vitro analysis. Int J Nanomedicine 6:485–494

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Teijeiro-Osorio D, Remuñán-López C, Alonso MJ (2009) Chitosan/cyclodextrin nanoparticles can efficiently transfect the airway epithelium in vitro. Eur J Pharm Biopharm 71:257–263

    Article  CAS  PubMed  Google Scholar 

  76. Bhise KS, Dhumal RS, Paradkar AR, Kadam SS (2008) Effect of drying methods on swelling, erosion and drug release from chitosan-naproxen sodium complexes. AAPS PharmSciTech 9:1–12

    Article  CAS  PubMed  Google Scholar 

  77. Sun W, Mao S, Wang Y et al (2010) Bioadhesion and oral absorption of enoxaparin nanocomplexes. Int J Pharm 386:275–281

    Article  CAS  PubMed  Google Scholar 

  78. Tapia C, Corbalán V, Costa E et al (2005) Study of the release mechanism of diltiazem hydrochloride from matrices bases on chitosan-alginate and chitosan-carrageenan mixtures. Biomacromolecules 6:2389–2395

    Article  CAS  PubMed  Google Scholar 

  79. Shavi GV, Nayak UY, Reddy MS (2011) Sustained release optimized formulation of anastrozole-loaded chitosan microspheres: in vitro and in vivo evaluation. J Mater Sci Mater Med 22(4):865–878

    Article  CAS  PubMed  Google Scholar 

  80. Kumar A, Vimal A, Kumar A (2016) Why chitosan? From properties to perspective of mucosal drug delivery. Int J Biol Macromol 91:615–622

    Article  CAS  PubMed  Google Scholar 

  81. Fouda NH, Abdelrehim RT, Hegazy DA, Habib BA (2018) Sustained ocular delivery of dorzolamide-HCL via proniosomal gel formulation: in-vitro characterization, statistical optimization, and in-vivo pharmacodynamic evaluation in rabbits. Drug Deliv 25:1340–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Abdel-Rashid RS, Helal DA, Omar MM, El Sisi AM (2019) Nanogel loaded with surfactant based nanovesicles for enhanced ocular delivery of acetazolamide. Int J Nanomedicine 14:2973–2983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mohammed S, Chouhan G, Anuforom O et al (2017) Thermosensitive hydrogel as an in situ gelling antimicrobial ocular dressing. Mater Sci Eng C 78:203–209

    Article  CAS  Google Scholar 

  84. Chenite A, Buschmann M, Wang D et al (2001) Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions. Carbohydr Polym 46:39–47

    Article  CAS  Google Scholar 

  85. Xu W, Liu K, Li T et al (2019) An in situ hydrogel based on carboxymethyl chitosan and sodium alginate dialdehyde for corneal wound healing after alkali burn. J Biomed Mater Res A 107:742–754

    Article  CAS  PubMed  Google Scholar 

  86. Lei L, Li X, **ong T et al (2018) Covalently cross-linked chitosan hydrogel sheet for topical ophthalmic delivery of levofloxacin. J Biomed Nanotechnol 14:371–378

    Article  CAS  PubMed  Google Scholar 

  87. Moreno M, Pow PY, Tabitha TST et al (2017) Modulating release of ranibizumab and aflibercept from thiolated chitosan-based hydrogels for potential treatment of ocular neovascularization. Expert Opin Drug Deliv 14:913–925

    Article  CAS  PubMed  Google Scholar 

  88. Cheng Y, Tsai T, Jhan Y et al (2016) Thermosensitive chitosan-based hydrogel as a topical ocular drug delivery system of latanoprost for glaucoma treatment. Carbohydr Polym 144:390–399

    Article  CAS  PubMed  Google Scholar 

  89. Song Y, Nagai N, Saijo S et al (2018) In situ formation of injectable chitosan-gelatin hydrogels through double crosslinking for sustained intraocular drug delivery. Mater Sci Eng C 88:1–12

    Article  CAS  Google Scholar 

  90. El-Feky GS, Zayed GM, Elshaier YAMM, Alsharif FM (2018) Chitosan-gelatin hydrogel crosslinked with oxidized sucrose for the ocular delivery of timolol maleate. J Pharm Sci 107:3098–3104

    Article  CAS  PubMed  Google Scholar 

  91. Cheng YH, Ko YC, Chang YF et al (2019) Thermosensitive chitosan-gelatin-based hydrogel containing curcumin-loaded nanoparticles and latanoprost as a dual-drug delivery system for glaucoma treatment. Exp Eye Res 179:179–187

    Article  CAS  PubMed  Google Scholar 

  92. Cheng YH, Chang YF, Ko YC, Liu-ling CJ (2020) Sustained release of levofloxacin from thermosensitive chitosan-based hydrogel for the treatment of postoperative endophthalmitis. J Biomed Mater Res B Appl Biomater 108:8–13

    Article  CAS  PubMed  Google Scholar 

  93. Irimia T, Muşat GC, Prisada RM et al (2019) Contributions on formulation and preliminary evaluation of ocular colloidal systems of chitosan and poloxamer 407 with bupivacaine hydrochloride. Farmacia 67:702–708

    Article  CAS  Google Scholar 

  94. Arvind LHS, Ali A (2017) In-situ gel system based on temperature and pH activation for sustained ocular delivery. Indo Am J P Sci 4:558–561

    CAS  Google Scholar 

  95. Gade SK, Shivshetty N, Sharma N et al (2018) Effect of mucoadhesive polymeric formulation on corneal permeation of fluoroquinolones. J Ocul Pharmacol Ther 34:570–578

    Article  CAS  PubMed  Google Scholar 

  96. Das S, Suresh PK (2010) Drug delivery to eye: special reference to nanoparticle. Int J Drug Deliv 2:12–21

    Article  CAS  Google Scholar 

  97. Giarmoukakis A, Labiris G, Sideroudi H et al (2013) Biodegradable nanoparticles for controlled subconjunctival delivery of latanoprost acid: in vitro and in vivo evaluation. Preliminary results. Exp Eye Res 112:29–36

    Article  CAS  PubMed  Google Scholar 

  98. De Campos AM, Diebold Y, Carvalho ELS et al (2004) Chitosan nanoparticles as new ocular drug delivery systems: in vitro stability, in vivo fate, and cellular toxicity. Pharm Res 21:803–810

    Article  PubMed  Google Scholar 

  99. Boddu SHS (2012) Polymeric nanoparticles for ophthalmic drug delivery: an update on research and patenting activity. Recent Pat Nanomed 2:96–112

    Article  CAS  Google Scholar 

  100. Almeida H, Amaral MH, Lobão P et al (2014) Applications of polymeric and lipid nanoparticles in ophthalmic pharmaceutical formulations: present and future considerations. J Pharm Pharm Sci 17:278–293

    Article  PubMed  Google Scholar 

  101. Lai SK, O’Hanlon DE, Harrold S et al (2007) Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci U S A 104:1482–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lai SK, Wang YY, Hida K et al (2010) Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses. Proc Natl Acad Sci U S A 107:598–603

    Article  CAS  PubMed  Google Scholar 

  103. Quiñones JP, Peniche H, Peniche C (2018) Chitosan based self-assembled nanoparticles in drug delivery. Polymers (Basel) 10:1–32

    Article  CAS  Google Scholar 

  104. Bodmeier R, Chen H, Paeratakul O (1989) A novel approach to the oral delivery of micro- or nanoparticles. Pharm Res An Off J Am Assoc Pharm Sci 6:413–417

    CAS  Google Scholar 

  105. Koukaras EN, Papadimitriou SA, Bikiaris DN, Froudakis GE (2012) Insight on the formation of chitosan nanoparticles through ionotropic gelation with tripolyphosphate. Mol Pharm 9:2856–2862

    Article  CAS  PubMed  Google Scholar 

  106. Koukaras EN, Papadimitriou SA, Bikiaris DN, Froudakis GE (2014) Properties and energetics for design and characterization of chitosan nanoparticles used for drug encapsulation. RSC Adv 4:12653–12661

    Article  CAS  Google Scholar 

  107. Morsi N, Ghorab D, Refai H, Teba H (2017) Nanodispersion-loaded mucoadhesive polymeric inserts for prolonged treatment of post-operative ocular inflammation. J Microencapsul 34:280–292

    Article  CAS  PubMed  Google Scholar 

  108. Sabbagh HAK, Abudayeh Z, Abudoleh SM et al (2019) Application of multiple regression analysis in optimization of metronidazole-chitosan nanoparticles. J Polym Res 26:1–4

    Article  CAS  Google Scholar 

  109. Abdelrahman AA, Salem HF, Khallaf RA, Ali AMA (2015) Modeling, optimization, and in vitro corneal permeation of chitosan-lomefloxacin HCl nanosuspension intended for ophthalmic delivery. J Pharm Innov 10:254–268

    Article  Google Scholar 

  110. Abul Kalam M, Khan AA, Khan S et al (2016) Optimizing indomethacin-loaded chitosan nanoparticle size, encapsulation, and release using box-Behnken experimental design. Int J Biol Macromol 87:329–340

    Article  CAS  PubMed  Google Scholar 

  111. Manchanda S, Sahoo PK (2017) Topical delivery of acetazolamide by encapsulating in mucoadhesive nanoparticles. Asian J Pharm Sci 12:550–557

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ameeduzzafar ISS, Abbas Bukhari SN et al (2018) Formulation and optimization of levofloxacin loaded chitosan nanoparticle for ocular delivery: in-vitro characterization, ocular tolerance and antibacterial activity. Int J Biol Macromol 108:650–659

    Article  CAS  PubMed  Google Scholar 

  113. Fathalla ZMA, Khaled KA, Hussein AK et al (2016) Formulation and corneal permeation of ketorolac tromethamine-loaded chitosan nanoparticles. Drug Dev Ind Pharm 42:514–524

    Article  CAS  PubMed  Google Scholar 

  114. Sharma S, Sharma A, Singh Sara U, Singh S (2018) Chitosan loaded ketorolac tromethamine nanoparticles for improved ocular delivery in eye inflammation. Indian J Pharm Educ Res 52:S202–S209

    Article  CAS  Google Scholar 

  115. Barwal I, Kumar R, Dada T, Yadav SC (2019) Effect of ultra-small chitosan nanoparticles doped with brimonidine on the ultra-structure of the trabecular meshwork of glaucoma patients. Microsc Microanal:1–15

    Google Scholar 

  116. Chiesa E, Greco A, Riva F et al (2019) Staggered herringbone microfluid device for the manufacturing of chitosan/TPP nanoparticles: systematic optimization and preliminary biological evaluation. Int J Mol Sci 20:1–22

    Article  CAS  Google Scholar 

  117. Silva NC, Silva S, Sarmento B, Pintado M (2015) Chitosan nanoparticles for daptomycin delivery in ocular treatment of bacterial endophthalmitis. Drug Deliv 22:885–893

    Article  CAS  PubMed  Google Scholar 

  118. Dubey V, Mohan P, Dangi JS, Kesavan K (2020) Brinzolamide loaded chitosan-pectin mucoadhesive nanocapsules for management of glaucoma: formulation, characterization and pharmacodynamic study. Int J Biol Macromol 152:1224–1232

    Article  PubMed  CAS  Google Scholar 

  119. Chhonker YS, Prasad YD, Chandasana H et al (2015) Amphotericin-B entrapped lecithin/chitosan nanoparticles for prolonged ocular application. Int J Biol Macromol 72:1451–1458

    Article  CAS  PubMed  Google Scholar 

  120. Başaran E, Şenel B, Kirimlioğlu GY et al (2015) Ornidazole incorporated chitosan nanoparticles for ocular application. Lat Am J Pharm 34:1180–1188

    Google Scholar 

  121. Marques Costa C, Coli Louvisse de Abreu L, Pereira dos Santos E et al (2015) Preparation and evaluation of chitosan submicroparticles containing pilocarpine for glaucoma therapy. Curr Drug Deliv 12:491–503

    Article  CAS  Google Scholar 

  122. Zhou J, Chen Y, Luo M et al (2019) Dual cross-linked chitosan microspheres formulated with spray-drying technique for the sustained release of levofloxacin. Drug Dev Ind Pharm 45:568–576

    Article  CAS  PubMed  Google Scholar 

  123. Fefelova NA, Nurkeeva ZS, Mun GA, Khutoryanskiy VV (2007) Mucoadhesive interactions of amphiphilic cationic copolymers based on [2-(methacryloyloxy)ethyl]trimethylammonium chloride. Int J Pharm 339:25–32

    Article  CAS  PubMed  Google Scholar 

  124. Hejjaji EMA, Smith AM, Morris GA (2018) Evaluation of the mucoadhesive properties of chitosan nanoparticles prepared using different chitosan to tripolyphosphate (CS:TPP) ratios. Int J Biol Macromol 120:1610–1617

    Article  CAS  PubMed  Google Scholar 

  125. Asasutjarit R, Theerachayanan T, Kewsuwan P et al (2015) Development and evaluation of diclofenac sodium loaded-N-trimethyl chitosan nanoparticles for ophthalmic use. AAPS PharmSciTech 16:1013–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Shinde UA, Joshi PN, Jain DD, Singh K (2019) Preparation and evaluation of N-trimethyl chitosan nanoparticles of flurbiprofen for ocular delivery. Curr Eye Res 44:575–582

    Article  CAS  PubMed  Google Scholar 

  127. Koutroumanis KP, Avgoustakis K, Bikiaris D (2010) Synthesis of cross-linked N-(2-carboxybenzyl)chitosan pH sensitive polyelectrolyte and its use for drug controlled delivery. Carbohydr Polym 82:181–188

    Article  CAS  Google Scholar 

  128. Jaiswal S, Dutta PK, Kumar S et al (2019) Methyl methacrylate modified chitosan: synthesis, characterization and application in drug and gene delivery. Carbohydr Polym 211:109–117

    Article  CAS  PubMed  Google Scholar 

  129. Savin CL, Popa M, Delaite C et al (2019) Chitosan grafted-poly(ethylene glycol) methacrylate nanoparticles as carrier for controlled release of bevacizumab. Mater Sci Eng C 98:843–860

    Article  CAS  Google Scholar 

  130. Rajawat GS, Shinde UA, Nair HA (2016) Chitosan-N-acetyl cysteine microspheres for ocular delivery of acyclovir: synthesis and in vitro/in vivo evaluation. J Drug Deliv Sci Technol 35:333–342

    Article  CAS  Google Scholar 

  131. Yu F, Zheng M, Zhang AY, Han Z (2019) A cerium oxide loaded glycol chitosan nano-system for the treatment of dry eye disease. J Control Release 315:40–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yu A, Shi H, Liu H et al (2020) Mucoadhesive dexamethasone-glycol chitosan nanoparticles for ophthalmic drug delivery. Int J Pharm 575:118943–111870

    Article  CAS  PubMed  Google Scholar 

  133. Carvalho SG, Araujo VHS, dos Santos AM et al (2020) Advances and challenges in nanocarriers and nanomedicines for veterinary application. Int J Pharm 580:119214–119229

    Article  CAS  PubMed  Google Scholar 

  134. Abd-Elsalam WH, ElKasabgy NA (2019) Mucoadhesive olaminosomes: a novel prolonged release nanocarrier of agomelatine for the treatment of ocular hypertension. Int J Pharm 560:235–245

    Article  CAS  PubMed  Google Scholar 

  135. Zhao F, Lu J, ** X et al (2018) Comparison of response surface methodology and artificial neural network to optimize novel ophthalmic flexible nano-liposomes: characterization, evaluation, in vivo pharmacokinetics and molecular dynamics simulation. Colloids Surf B Biointerfaces 172:288–297

    Article  CAS  PubMed  Google Scholar 

  136. Liu R, Wang S, Sun L et al (2016) A novel cationic nanostructured lipid carrier for improvement of ocular bioavailability: design, optimization, in vitro and in vivo evaluation. J Drug Deliv Sci Technol 33:28–36

    Article  CAS  Google Scholar 

  137. Liu R, Wang S, Fang S et al (2016) Liquid crystalline nanoparticles as an ophthalmic delivery system for tetrandrine: development, characterization, and in vitro and in vivo evaluation. Nanoscale Res Lett 11:1–12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Husseini GA, Pitt WG (2008) Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv Drug Deliv Rev 60:1137–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gaucher G, Marchessault RH, Leroux JC (2010) Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes. J Control Release 143:2–12

    Article  CAS  PubMed  Google Scholar 

  140. Majidinia M, Mirza-Aghazadeh-Attari M, Rahimi M et al (2020) Overcoming multidrug resistance in cancer: recent progress in nanotechnology and new horizons. IUBMB Life 72:855–871

    Article  CAS  PubMed  Google Scholar 

  141. Fang X, Cao J, Shen A (2020) Advances in anti-breast cancer drugs and the application of nano-drug delivery systems in breast cancer therapy. J Drug Deliv Sci Technol 57:101662–101678

    Article  CAS  Google Scholar 

  142. Shi S, Zhang Z, Luo Z et al (2015) Chitosan grafted methoxy poly (ethylene glycol)-poly (ε-caprolactone) nanosuspension for ocular delivery of hydrophobic diclofenac. Nat Publ Gr 5:1–12

    Google Scholar 

  143. Xu X, Sun L, Zhou L et al (2020) Functional chitosan oligosaccharide nanomicelles for topical ocular drug delivery of dexamethasone. Carbohydr Polym 227:115356–115367

    Article  CAS  PubMed  Google Scholar 

  144. Fabiano A, Piras AM, Guazzelli L et al (2019) Impact of different mucoadhesive polymeric nanoparticles loaded in thermosensitive hydrogels on transcorneal administration of 5-fluorouracil. Pharmaceutics 11:623–638

    Article  CAS  PubMed Central  Google Scholar 

  145. Cui CL, Gan L, Lan XY et al (2019) Development of sustainable carrier in thermosensitive hydrogel based on chitosan/alginate nanoparticles for in situ delivery system. Polym Compos 40:2187–2196

    Article  CAS  Google Scholar 

  146. Ahdyani R, Novitasari L, Martien R, Danarti R (2019) Formulation and characterization of timolol maleate-loaded nanoparticles gel by ionic gelation method using chitosan and sodium alginate. Int J Appl Pharm 11:48–54

    Article  CAS  Google Scholar 

  147. Kalam MA (2016) Development of chitosan nanoparticles coated with hyaluronic acid for topical ocular delivery of dexamethasone. Int J Biol Macromol 89:127–136

    Article  PubMed  CAS  Google Scholar 

  148. Kalam MA (2016) The potential application of hyaluronic acid coated chitosan nanoparticles in ocular delivery of dexamethasone. Int J Biol Macromol 89:559–568

    Article  PubMed  CAS  Google Scholar 

  149. Franca JR, Batista LD, Ribeiro TG et al (2015) Development and validation of a high performance liquid chromatographic method for determination of bimatoprost in chitosan-based ocular inserts. Anal Lett 48:531–540

    Article  CAS  Google Scholar 

  150. Foureaux G, Franca JR, Nogueira JC et al (2015) Ocular inserts for sustained release of the angiotensin-converting enzyme 2 activator, diminazene aceturate, to treat glaucoma in rats. PLoS One 10:1–18

    Article  CAS  Google Scholar 

  151. Franca JR, Foureaux G, Fuscaldi LL et al (2019) Chitosan/hydroxyethyl cellulose inserts for sustained-release of dorzolamide for glaucoma treatment: in vitro and in vivo evaluation. Int J Pharm 570:118662–118672

    Article  CAS  PubMed  Google Scholar 

  152. Wang L, Jiang YY, Lin N (2020) Promise of latanoprost and timolol loaded combinatorial nanosheet for therapeutic applications in glaucoma. J King Saud Univ Sci 32:1042–1047

    Article  Google Scholar 

  153. Silva D, Pinto LFV, Bozukova D et al (2016) Chitosan/alginate based multilayers to control drug release from ophthalmic lens. Colloids Surf B Biointerfaces 147:81–89

    Article  CAS  PubMed  Google Scholar 

  154. Hoyo J, Ivanova K, Guaus E, Tzanov T (2019) Multifunctional ZnO NPs-chitosan-gallic acid hybrid nanocoating to overcome contact lenses associated conditions and discomfort. J Colloid Interface Sci 543:114–121

    Article  CAS  PubMed  Google Scholar 

  155. Fulgêncio Gde O, Viana FA, Ribeiro RR, Yoshida MI, Faraco AG, Cunha-Júnior AS (2012) New mucoadhesive chitosan film for ophthalmic drug delivery of timolol maleate: in vivo evaluation. J Ocul Pharmacol Ther 28(4):350–358

    Article  PubMed  CAS  Google Scholar 

  156. Liab B, Wangbc J, Guib Q, Yang H (2020) Drug-loaded chitosan film prepared via facile solution casting and air-drying of plain water-based chitosan solution for ocular drug delivery. Bioact Mater 5(3):577–583

    Article  Google Scholar 

  157. Mahajan HS, Deshmukh SR (2015) Development andevaluation of gel-forming ocular films based on xyloglucan. Carbohydr Polym 122:243–247

    Article  CAS  PubMed  Google Scholar 

  158. De Souza JF, Maia KN, Patrício PSDO, Fernandes-Cunha GM, Da Silva MG, Jensen CEDM, Da Silva GR (2016) Ocular inserts based on chitosan and brimonidine tartrate: development, characterization and biocompatibility. J Drug Deliv Sci Technol 32:21–30

    Article  CAS  Google Scholar 

  159. Franca JR, Foureaux G, Fuscaldi LL, Ribeiro TG, Rodrigues LB, Bravo R et al (2014) Bimatoprost-loaded ocular inserts as sustained release drug delivery systems for glaucoma treatment: in vitro and in vivo evaluation. PLoS One 9(4):e95461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. D’Almeida M, Attik N, Amalric J, Brunon C, Renaud F, Abouelleil H et al (2017) Chitosan coating as an antibacterial surface for biomedical applications. PLoS One 12(12):e0189537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Chen X, Li X, Zhou Y et al (2012) Chitosan-based thermosensitive hydrogel as a promising ocular drug delivery system: preparation, characterization, and in vivo evaluation. J Biomater Appl 27(4):391–402

    Google Scholar 

  162. Shastri DH, Oza PM, Dodiya HD, Shelat PK (2017) Sustained release thiolated chitosan based nanoparticulate in situ gel for ocular delivery of prulifloxacin. Curr Nanomed 7:3

    Article  CAS  Google Scholar 

  163. Karava A, Lazaridou M, Nanaki S, Michailidou G, Christodoulou E, Kostoglou M, Iatrou H, Bikiaris DN (2020) Chitosan derivatives with mucoadhesive and antimicrobial properties for simultaneous nanoencapsulation and extended ocular release formulations of dexamethasone and chloramphenicol drugs. Pharmaceutics 12:594–614

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Natesan, S. et al. (2021). Enhanced Topical Delivery of Drugs to the Eye Using Chitosan Based Systems. In: Jayakumar, R., Prabaharan, M. (eds) Chitosan for Biomaterials IV. Advances in Polymer Science, vol 288. Springer, Cham. https://doi.org/10.1007/12_2021_105

Download citation

Publish with us

Policies and ethics

Navigation