3D-Printed Chitosan Composites for Biomedical Applications

  • Chapter
  • First Online:
Chitosan for Biomaterials IV

Part of the book series: Advances in Polymer Science ((POLYMER,volume 288))

Abstract

Regeneration of defective or diseased tissue by 3D-printed biomaterials is an emerging area of research, and 3D printing technology will meet the shortage of organ transplantation and therapeutic clinical applications. The development of novel bio-inks for 3D printing has challenges, including the rheological, physical, chemical, and biological properties of materials, the risk of an immune response, cytotoxicity, and regeneration rate. In recent years, chitosan and its composites as bio-inks for 3D bioprinting to develop artificial organs have been studied. The results infer that the regenerative capacity of the 3D printed chitosan composites varies depending on size, porosity, stimulating effect, cell interaction, cell adhesion, and the differentiation potential of stem cells. In this review, the types of 3D printing technology for the fabrication system and their role in tissue engineering applications are studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 245.03
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 320.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 320.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Younger EM, Chapman MW (1989) Morbidity at bone graft donor sites. J Orthop Trauma 3(3):192–195

    Article  CAS  PubMed  Google Scholar 

  2. Banwart JC, Asher MA, Ruth S (1995) Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine 20(9):1055–1060

    Article  CAS  PubMed  Google Scholar 

  3. Delloye C, Olivier C, Druez V, Barbier O (2007) Bone allografts: what they can offer and what they cannot. J Bone Joint Surg 89(5):574–580

    Article  CAS  Google Scholar 

  4. Goldberg VM, Danek MS (2002) Bone 400(500):600

    Google Scholar 

  5. Ramesh S, Harrysson OLA, Rao PK, Tamayol A, Cormier DR, Zhang Y, Rivero IV (2021) Extrusion bioprinting: recent progress, challenges, and future opportunities. Bioprinting 21

    Google Scholar 

  6. Kim K, Lee JW, Shin KS (2012) Polyethylenimine-capped Ag nanoparticle film as a platform for detecting charged dye molecules by surface-enhanced raman scattering and metal-enhanced fluorescence. ACS Appl Mater Interfaces 4(10):5498–5504

    Article  CAS  PubMed  Google Scholar 

  7. Francioli SE, Martin I, Sie CP, Hagg R, Tommasini R, Candrian C, Heberer M, Barbero A (2007) Growth factors for clinical-scale expansion of human articular chondrocytes: relevance for automated bioreactor systems. Tissue Eng 13(6):1227–1234

    Article  CAS  PubMed  Google Scholar 

  8. Labbaf S, Ghanbar H, Stride E, Edirisinghe M (2014) Preparation of multilayered polymeric structures using a novel four-needle coaxial electrohydrodynamic device. Macromol Rapid Commun 35(6):618–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Singh S, Afara IO, Tehrani AH, Oloyede A (2015) Effect of decellularization on the load-bearing characteristics of articular cartilage matrix. Tissue Eng Regen Med 12(5):294–305

    Article  CAS  Google Scholar 

  10. Augustine R (2018) Skin bioprinting: a novel approach for creating artificial skin from synthetic and natural building blocks. Prog Biomater 7(2):77–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Balagangadharan K, Dhivya S, Selvamurugan N (2017) Chitosan based nanofibers in bone tissue engineering. Int J Biol Macromol 104(Pt B):1372–1382

    Article  CAS  PubMed  Google Scholar 

  12. LogithKumar R, KeshavNarayan A, Dhivya S, Chawla A, Saravanan S, Selvamurugan N (2016) A review of chitosan and its derivatives in bone tissue engineering. Carbohydr Polym 151:172–188

    Article  CAS  PubMed  Google Scholar 

  13. Chen Y, Liu JM, **ong XX, Qiu XY, Pan F, Liu D, Lan SJ, ** S, Yu SB, Chen XQ (2015) Piperlongumine selectively kills hepatocellular carcinoma cells and preferentially inhibits their invasion via ROS-ER-MAPKs-CHOP. Oncotarget 6(8):6406–6421

    Article  PubMed  PubMed Central  Google Scholar 

  14. He Y, Derakhshanfar S, Zhong W, Li B, Lu F, **ng M, Li X (2020) Characterization and application of carboxymethyl chitosan-based bioink in cartilage tissue engineering. J Nanomater 2020

    Google Scholar 

  15. Li H, Tan YJ, Liu S, Li L (2018) Three-dimensional bioprinting of oppositely charged hydrogels with super strong Interface bonding. ACS Appl Mater Interfaces 10(13):11164–11174

    Article  CAS  PubMed  Google Scholar 

  16. Holzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication 8(3):032002

    Article  PubMed  CAS  Google Scholar 

  17. Pereira RF, Sousa A, Barrias CC, Bártolo PJ, Granja PL (2018) A single-component hydrogel bioink for bioprinting of bioengineered 3D constructs for dermal tissue engineering. Mater Horizons 5(6):1100–1111

    Article  CAS  Google Scholar 

  18. Cellink https://www.cellink.com/

  19. Feng X (2009) Chemical and biochemical basis of cell-bone matrix interaction in health and disease. Curr Chem Biol 3(2):189–196

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu L, Chen S, Liu K, Wen W, Lu L, Ding S, Zhou C, Luo B (2020) 3D poly (L-lactide)/chitosan micro/nano fibrous scaffolds functionalized with quercetin-polydopamine for enhanced osteogenic and anti-inflammatory activities. Chem Eng J 391

    Google Scholar 

  21. **e Z, Gao M, Lobo AO, Webster TJ (2020) 3D bioprinting in tissue engineering for medical applications: the classic and the hybrid. Polymers (Basel) 12(8)

    Google Scholar 

  22. Sadeghianmaryan A, Naghieh S, Alizadeh Sardroud H, Yazdanpanah Z, Afzal Soltani Y, Sernaglia J, Chen X (2020) Extrusion-based printing of chitosan scaffolds and their in vitro characterization for cartilage tissue engineering. Int J Biol Macromol 164:3179–3192

    Article  CAS  PubMed  Google Scholar 

  23. Wang X, Yan Y, Zhang R (2007) Rapid prototy** as a tool for manufacturing bioartificial livers. Trends Biotechnol 25(11):505–513

    Article  CAS  PubMed  Google Scholar 

  24. Wang X (2012) Intelligent freeform manufacturing of complex organs. Artif Organs 36(11):951–961

    Article  PubMed  Google Scholar 

  25. Zhang S, Wang G, Lin X, Chatzinikolaidou M, Jennissen HP, Laub M, Uludaǧ H (2008) Polyethylenimine-coated albumin nanoparticles for BMP-2 delivery. Biotechnol Prog 24(4):945–956

    Article  CAS  PubMed  Google Scholar 

  26. Li S, Tian X, Fan J, Tong H, Ao Q, Wang X (2019) Chitosans for tissue repair and organ three-dimensional (3D) bioprinting. Micromachines 10(11)

    Google Scholar 

  27. Skeldon G, Lucendo-Villarin B, Shu W (2018) Three-dimensional bioprinting of stem-cell derived tissues for human regenerative medicine. Philos Trans R Soc Lond B Biol Sci 373(1750)

    Google Scholar 

  28. Ozbolat IT, Hospodiuk M (2016) Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343

    Article  CAS  PubMed  Google Scholar 

  29. Tabriz AG, Hermida MA, Leslie NR, Shu W (2015) Three-dimensional bioprinting of complex cell laden alginate hydrogel structures. Biofabrication 7(4):045012

    Article  PubMed  Google Scholar 

  30. Aguado BA, Mulyasasmita W, Su J, Lampe KJ, Heilshorn SC (2012) Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng Part A 18(7–8):806–815

    Article  CAS  PubMed  Google Scholar 

  31. Sarkar SD, Farrugia BL, Dargaville TR, Dhara S (2013) Chitosan–collagen scaffolds with nano/microfibrous architecture for skin tissue engineering. J Biomed Mater Res 101(12):3482–3492

    Article  CAS  Google Scholar 

  32. Mazzoli A (2013) Selective laser sintering in biomedical engineering. Med Biol Eng Comput 51(3):245–256

    Article  PubMed  Google Scholar 

  33. Tao O, Kort-Mascort J, Lin Y, Pham HM, Charbonneau AM, ElKashty OA, Kinsella JM, Tran SD (2019) The applications of 3D printing for craniofacial tissue engineering. Micromachines (Basel) 10(7)

    Google Scholar 

  34. Preethi Soundarya S, Haritha Menon A, Viji Chandran S, Selvamurugan N (2018) Bone tissue engineering: scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. Int J Biol Macromol 119:1228–1239

    Article  CAS  PubMed  Google Scholar 

  35. Dhillon H, Chikara S, Reindl KM (2014) Piperlongumine induces pancreatic cancer cell death by enhancing reactive oxygen species and DNA damage. Toxicol Rep 1:309–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nakamura M, Nishiyama Y, Henmi C, Iwanaga S, Nakagawa H, Yamaguchi K, Akita K, Mochizuki S, Takiura K (2008) Ink jet three-dimensional digital fabrication for biological tissue manufacturing: analysis of alginate microgel beads produced by ink jet droplets for three dimensional tissue fabrication. J Imag Sci Tech 52(6)

    Google Scholar 

  37. Gudapati H, Dey M, Ozbolat I (2016) A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials 102:20–42

    Article  CAS  PubMed  Google Scholar 

  38. Zhou L, Ramezani H, Sun M, **e M, Nie J, Lv S, Cai J, Fu J, He Y (2020) 3D printing of high-strength chitosan hydrogel scaffolds without any organic solvents. Biomater Sci 8(18):5020–5028

    Article  PubMed  Google Scholar 

  39. Zhao H, Liao J, Wu F, Shi J (2020) Mechanical strength improvement of chitosan/hydroxyapatite scaffolds by coating and cross-linking. J Mech Behav Biomed Mater

    Google Scholar 

  40. Fischetti T, Celikkin N, Contessi Negrini N, Farè S, Swieszkowski W (2020) Tripolyphosphate-crosslinked chitosan/gelatin biocomposite ink for 3D printing of uniaxial scaffolds. Front Bioeng Biotechnol 8

    Google Scholar 

  41. Huang J, Fu H, Wang Z, Meng Q, Liu S, Wang H, Zheng X, Dai J, Zhang Z (2016) BMSCs-laden gelatin/sodium alginate/carboxymethyl chitosan hydrogel for 3D bioprinting. RSC Adv 6(110):108423–108430

    Article  CAS  Google Scholar 

  42. Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32(8–9):991–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun K, Li H, Li R, Nian Z, Li D, Xu C (2015) Silk fibroin/collagen and silk fibroin/chitosan blended three-dimensional scaffolds for tissue engineering. Eur J Orthop Surg Traumatol 25(2):243–249

    Article  PubMed  Google Scholar 

  44. Zhang J, Allardyce BJ, Rajkhowa R, Kalita S, Dilley RJ, Wang X, Liu X (2019) Silk particles, microfibres and nanofibres: a comparative study of their functions in 3D printing hydrogel scaffolds. Mater Sci Eng C 103

    Google Scholar 

  45. Lee SJ, Heo DN, Park JS, Kwon SK, Lee JH, Lee JH, Kim WD, Kwon IK, Park SA (2015) Characterization and preparation of bio-tubular scaffolds for fabricating artificial vascular grafts by combining electrospinning and a 3D printing system. Phys Chem Chem Phys 17(5):2996–2999

    Article  CAS  PubMed  Google Scholar 

  46. Fedotov AY, Egorov AA, Zobkov YV, Mironov AV, Popov VK, Barinov SM, Komlev VS (2016) 3D printing of mineral-polymer structures based on calcium phosphate and polysaccharides for tissue engineering. Inorg Mater Appl Res 7(2):240–243

    Article  Google Scholar 

  47. Akkineni AR, Ahlfeld T, Lode A, Gelinsky M (2016) A versatile method for combining different biopolymers in a core/shell fashion by 3D plotting to achieve mechanically robust constructs. Biofabrication 8(4)

    Google Scholar 

  48. Ko ES, Kim C, Choi Y, Lee KY (2020) 3D printing of self-healing ferrogel prepared from glycol chitosan, oxidized hyaluronate, and iron oxide nanoparticles. Carbohydr Polym 245

    Google Scholar 

  49. Gu Q, Tomaskovic-Crook E, Wallace GG, Crook JM (2017) 3D bioprinting human induced pluripotent stem cell constructs for in situ cell proliferation and successive multilineage differentiation. Adv Healthc Mater 6(17)

    Google Scholar 

  50. Lu H, Pan X, Hu M, Zhang J, Yu Y, Hu X, Jiang K (2020) Fabrication of graphene/gelatin/chitosan/tricalcium phosphate 3D printed scaffolds for bone tissue regeneration applications. Appl Nanosci 11:335–346

    Article  CAS  Google Scholar 

  51. Zafeiris K, Brasinika D, Karatza A, Koumoulos E, Karoussis IK, Kyriakidou K, Charitidis CA (2021) Additive manufacturing of hydroxyapatite–chitosan–genipin composite scaffolds for bone tissue engineering applications. Mater Sci Eng C 119

    Google Scholar 

  52. Kamarul T, Krishnamurithy G, Salih ND, Ibrahim NS, Raghavendran HR, Suhaeb AR, Choon DS (2014) Biocompatibility and toxicity of poly(vinyl alcohol)/N,O-carboxymethyl chitosan scaffold. ScientificWorldJournal 2014:905103

    Article  PubMed  PubMed Central  Google Scholar 

  53. Babu A, Ramesh R (2017) Multifaceted applications of chitosan in cancer drug delivery and therapy. Mar Drugs 15(4)

    Google Scholar 

  54. Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16(12):496–504

    Article  CAS  Google Scholar 

  55. Li YE, Lee IC (2020) The current trends of biosensors in tissue engineering. Biosensors (Basel) 10(8)

    Google Scholar 

  56. Otero F, Magner E (2020) Biosensors-recent advances and future challenges in electrode materials. Sensors (Basel) 20(12)

    Google Scholar 

  57. Liu Y, Chang Y, Yang C, Sang Z, Yang T, Ang W, Ye W, Wei Y, Gong C, Luo Y (2014) Biodegradable nanoassemblies of piperlongumine display enhanced anti-angiogenesis and anti-tumor activities. Nanoscale 6(8):4325–4337

    Article  CAS  PubMed  Google Scholar 

  58. Ferraro F, Celso CL, Scadden D (2010) Adult stem cells and their niches. Adv Exp Med Biol 695:155–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP, Badylak SF (2009) Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 30(8):1482–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li Z, Zhang M (2005) Chitosan-alginate as scaffolding material for cartilage tissue engineering. J Biomed Mater Res A 75(2):485–493

    Article  PubMed  CAS  Google Scholar 

  61. Zhao CQ, Liu WG, Xu ZY, Li JG, Huang TT, Lu YJ, Huang HG, Lin JX (2020) Chitosan ducts fabricated by extrusion-based 3D printing for soft-tissue engineering. Carbohydr Polym 236

    Google Scholar 

  62. Wu Q, Therriault D, Heuzey MC (2018) Processing and properties of chitosan inks for 3D printing of hydrogel microstructures. ACS Biomater Sci Eng 4(7):2643–2652

    Article  CAS  PubMed  Google Scholar 

  63. Lin HY, Chang TW, Peng TK (2018) Three-dimensional plotted alginate fibers embedded with diclofenac and bone cells coated with chitosan for bone regeneration during inflammation. J Biomed Mater Res A 106(6):1511–1521

    Article  CAS  PubMed  Google Scholar 

  64. Intini C, Elviri L, Cabral J, Mros S, Bergonzi C, Bianchera A, Flammini L, Govoni P, Barocelli E, Bettini R, McConnell M (2018) 3D-printed chitosan-based scaffolds: an in vitro study of human skin cell growth and an in-vivo wound healing evaluation in experimental diabetes in rats. Carbohydr Polym 199:593–602

    Article  CAS  PubMed  Google Scholar 

  65. Elviri L, Foresti R, Bergonzi C, Zimetti F, Marchi C, Bianchera A, Bernini F, Silvestri M, Bettini R (2017) Highly defined 3D printed chitosan scaffolds featuring improved cell growth. Biomed Mater 12(4)

    Google Scholar 

  66. Wu Q, Maire M, Lerouge S, Therriault D, Heuzey MC (2017) 3D printing of microstructured and stretchable chitosan hydrogel for guided cell growth. Adv Biosyst 1(6)

    Google Scholar 

  67. Darabi MA, Khosrozadeh A, Mbeleck R, Liu Y, Chang Q, Jiang J, Cai J, Wang Q, Luo G, **ng M (2017) Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability. Adv Mater 29(31)

    Google Scholar 

  68. Puertas-Bartolomé M, Włodarczyk-Biegun MK, Del Campo A, Vázquez-Lasa B, Román JS (2020) 3d printing of a reactive hydrogel bio-ink using a static mixing tool. Polymers 12(9):1–17

    Article  CAS  Google Scholar 

  69. Tonda-Turo C, Carmagnola I, Chiappone A, Feng Z, Ciardelli G, Hakkarainen M, Sangermano M (2020) Photocurable chitosan as bioink for cellularized therapies towards personalized scaffold architecture. Bioprinting 18

    Google Scholar 

  70. Magli S, Rossi GB, Risi G, Bertini S, Cosentino C, Crippa L, Ballarini E, Cavaletti G, Piazza L, Masseroni E, Nicotra F, Russo L (2020) Design and synthesis of chitosan – gelatin hybrid hydrogels for 3D printable in vitro models. Front Chem 8

    Google Scholar 

  71. Shen Y, Tang H, Huang X, Hang R, Zhang X, Wang Y, Yao X (2020) DLP printing photocurable chitosan to build bio-constructs for tissue engineering. Carbohydr Polym 235

    Google Scholar 

  72. Tsukamoto Y, Akagi T, Akashi M (2020) Vascularized cardiac tissue construction with orientation by layer-by-layer method and 3D printer. Sci Rep 10(1)

    Google Scholar 

  73. Tsukamoto Y, Akagi T, Shima F, Akashi M (2017) Fabrication of orientation-controlled 3D tissues using a layer-by-layer technique and 3D printed a thermoresponsive gel frame. Tissue Eng Part C Methods 23(6):357–366

    Article  CAS  PubMed  Google Scholar 

  74. Cleymand F, Poerio A, Mamanov A, Elkhoury K, Ikhelf L, Jehl JP, Kahn CJF, Ponçot M, Arab-Tehrany E, Mano JF (2021) Development of novel chitosan/guar gum inks for extrusion-based 3D bioprinting: process, printability and properties. Bioprinting 21

    Google Scholar 

  75. Ahmed J, Mulla M, Maniruzzaman M (2020) Rheological and dielectric behavior of 3D-printable chitosan/graphene oxide hydrogels. ACS Biomater Sci Eng 6(1):88–99

    Article  CAS  PubMed  Google Scholar 

  76. Wang JQ, Jiang BJ, Guo WJ, Zhao YM (2019) Indirect 3D printing technology for the fabrication of customised β-TCP/chitosan scaffold with the shape of rabbit radial head – an in vitro study. J Orthop Surg Res 14(1)

    Google Scholar 

  77. Wang J, Nor Hidayah Z, Razak SIA, Kadir MRA, Nayan NHM, Li Y, Amin KAM (2019) Surface entrapment of chitosan on 3D printed polylactic acid scaffold and its biomimetic growth of hydroxyapatite. Compos Interfaces 26(5):465–478

    Article  CAS  Google Scholar 

  78. Singh S, Singh G, Prakash C, Ramakrishna S, Lamberti L, Pruncu CI (2020) 3D printed biodegradable composites: an insight into mechanical properties of PLA/chitosan scaffold. Polym Test 89

    Google Scholar 

  79. Ilhan E, Ulag S, Sahin A, Yilmaz BK, Ekren N, Kilic O, Sengor M, Kalaskar DM, Oktar FN, Gunduz O (2021) Fabrication of tissue-engineered tympanic membrane patches using 3D-printing technology. J Mech Behav Biomed Mater 114

    Google Scholar 

  80. Li B, Wang J, Gui Q, Yang H (2020) Continuous production of uniform chitosan beads as hemostatic dressings by a facile flow injection method. J Mater Chem B 8(35):7941–7946

    Article  CAS  PubMed  Google Scholar 

  81. Pisani S, Dorati R, Scocozza F, Mariotti C, Chiesa E, Bruni G, Genta I, Auricchio F, Conti M, Conti B (2020) Preliminary investigation on a new natural based poly(gamma-glutamic acid)/chitosan bioink. J Biomed Mater Res B Appl Biomater 108(7):2718–2732

    Article  CAS  PubMed  Google Scholar 

  82. Nazeer MA, Onder OC, Sevgili I, Yilgor E, Kavakli IH, Yilgor I (2020) 3D printed poly(lactic acid) scaffolds modified with chitosan and hydroxyapatite for bone repair applications. Mater Today Commun 25

    Google Scholar 

  83. Li C, Wang K, Li T, Zhou X, Ma Z, Deng C, He C, Wang B, Wang J (2020) Patient-specific scaffolds with a biomimetic gradient environment for articular cartilage-subchondral bone regeneration. ACS Appl Bio Mater 3(8):4820–4831

    Article  CAS  PubMed  Google Scholar 

  84. Mora-Boza A, Włodarczyk-Biegun MK, Del Campo A, Vázquez-Lasa B, Román JS (2020) Glycerylphytate as an ionic crosslinker for 3D printing of multi-layered scaffolds with improved shape fidelity and biological features. Biomater Sci 8(1):506–516

    Article  CAS  Google Scholar 

  85. Heidenreich AC, Pérez-Recalde M, González Wusener A, Hermida ÉB (2020) Collagen and chitosan blends for 3D bioprinting: a rheological and printability approach. Polym Test 82

    Google Scholar 

  86. Butler HM, Naseri E, MacDonald DS, Andrew Tasker R, Ahmadi A (2020) Optimization of starch- and chitosan-based bio-inks for 3D bioprinting of scaffolds for neural cell growth. Materialia 12

    Google Scholar 

  87. Hafezi F, Shorter S, Tabriz AG, Hurt A, Elmes V, Boateng J, Douroumis D (2020) Bioprinting and preliminary testing of highly reproducible novel bioink for potential skin regeneration. Pharmaceutics 12(6):1–21

    Article  CAS  Google Scholar 

  88. Deng Z, Qian T, Hang F (2020) Three-dimensional printed hydrogels with high elasticity, high toughness, and ionic conductivity for multifunctional applications. ACS Biomater Sci Eng 6(12):7061–7070

    Article  CAS  PubMed  Google Scholar 

  89. Liu X, Song S, Huang J, Fu H, Ning X, He Y, Zhang Z (2020) HBC-nanofiber hydrogel scaffolds with 3D printed internal microchannels for enhanced cartilage differentiation. J Mater Chem B 8(28):6115–6127

    Article  CAS  PubMed  Google Scholar 

  90. Sun Y, Yang C, Zhu X, Wang JJ, Liu XY, Yang XP, An XW, Liang J, Dong HJ, Jiang W, Chen C, Wang ZG, Sun HT, Tu Y, Zhang S, Chen F, Li XH (2019) 3D printing collagen/chitosan scaffold ameliorated axon regeneration and neurological recovery after spinal cord injury. J Biomed Mater Res A 107(9):1898–1908

    Article  CAS  PubMed  Google Scholar 

  91. Maalihan RD, Chen Q, Agueda JRHS, Pajarito BB, Tamura H, Advincula RC (2020) On the use of surfactant-complexed chitosan for toughening 3D printed polymethacrylate composites. Macromol Mater Eng 306(1):2000448

    Article  CAS  Google Scholar 

  92. Nasri-Nasrabadi B, Kaynak A, Adams SD, Heidarian P, Kouzani AZ (2019) Fabrication of a conductive composite structure with enhanced stretchability using direct-write 3D printing. Mater Res Express 6(8)

    Google Scholar 

  93. Mania S, Ryl J, **n JR, Wang YJ, Michałowska A, Tylingo R (2019) The production possibility of the antimicrobial filaments by co-extrusion of the pla pellet with chitosan powder for FDM 3D printing technology. Polymers 11(11)

    Google Scholar 

  94. Long J, Etxeberria AE, Nand AV, Bunt CR, Ray S, Seyfoddin A (2019) A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. Mater Sci Eng C 104

    Google Scholar 

  95. Hafezi F, Scoutaris N, Douroumis D, Boateng J (2019) 3D printed chitosan dressing crosslinked with genipin for potential healing of chronic wounds. Int J Pharm 560:406–415

    Article  CAS  PubMed  Google Scholar 

  96. Ergul NM, Unal S, Kartal I, Kalkandelen C, Ekren N, Kilic O, Chi-Chang L, Gunduz O (2019) 3D printing of chitosan/poly(vinyl alcohol) hydrogel containing synthesized hydroxyapatite scaffolds for hard-tissue engineering. Polym Test 79

    Google Scholar 

  97. Zhang J, Allardyce BJ, Rajkhowa R, Zhao Y, Dilley RJ, Redmond SL, Wang X, Liu X (2018) 3D printing of silk particle-reinforced chitosan hydrogel structures and their properties. ACS Biomater Sci Eng 4(8):3036–3046

    Article  CAS  PubMed  Google Scholar 

  98. Wu Q, Zou S, Gosselin FP, Therriault D, Heuzey MC (2018) 3D printing of a self-healing nanocomposite for stretchable sensors. J Mater Chem C 6(45):12180–12186

    Article  CAS  Google Scholar 

  99. Lee D, Park JP, Koh MY, Kim P, Lee J, Shin M, Lee H (2018) Chitosan-catechol: a writable bioink under serum culture media. Biomater Sci 6(5):1040–1047

    Article  CAS  PubMed  Google Scholar 

  100. Liu Q, Li Q, Xu S, Zheng Q, Cao X (2018) Preparation and properties of 3D printed alginate-chitosan polyion complex hydrogels for tissue engineering. Polymers 10(6)

    Google Scholar 

  101. Wu Y, Sriram G, Fawzy AS, Fuh JYH, Rosa V, Cao T, Wong YS (2016) Fabrication and evaluation of electrohydrodynamic jet 3D printed polycaprolactone/chitosan cell carriers using human embryonic stem cell-derived fibroblasts. J Biomater Appl 31(2):181–192

    Article  CAS  PubMed  Google Scholar 

  102. Wu CS (2016) Modulation, functionality, and cytocompatibility of three-dimensional printing materials made from chitosan-based polysaccharide composites. Mater Sci Eng C 69:27–36

    Article  CAS  Google Scholar 

  103. Turner PR, Murray E, McAdam CJ, McConnell MA, Cabral JD (2020) Peptide chitosan/dextran Core/Shell vascularized 3D constructs for wound healing. ACS Appl Mater Interfaces 12(29):32328–32339

    Article  CAS  PubMed  Google Scholar 

  104. Ulag S, Ilhan E, Sahin A, Karademir Yilmaz B, Kalaskar DM, Ekren N, Kilic O, Nuzhet Oktar F, Gunduz O (2020) 3D printed artificial cornea for corneal stromal transplantation. Eur Polym J 133

    Google Scholar 

  105. Ren Y, Lou R, Liu X, Gao M, Zheng H, Yang T, **e H, Yu W, Ma X (2016) A self-healing hydrogel formation strategy: via exploiting endothermic interactions between polyelectrolytes. Chem Commun 52(37):6273–6276

    Article  CAS  Google Scholar 

  106. Rogina A, Pribolšan L, Hanžek A, Gómez-Estrada L, Gallego Ferrer G, Marijanović I, Ivanković M, Ivanković H (2016) Macroporous poly(lactic acid) construct supporting the osteoinductive porous chitosan-based hydrogel for bone tissue engineering. Polymer 98:172–181

    Article  CAS  Google Scholar 

  107. Wang X, Wei C, Cao B, Jiang L, Hou Y, Chang J (2018) Fabrication of multiple-layered hydrogel scaffolds with elaborate structure and good mechanical properties via 3D printing and ionic reinforcement. ACS Appl Mater Interfaces 10(21):18338–18350

    Article  CAS  PubMed  Google Scholar 

  108. Akkineni AR, Luo Y, Schumacher M, Nies B, Lode A, Gelinsky M (2015) 3D plotting of growth factor loaded calcium phosphate cement scaffolds. Acta Biomater 27:264–274

    Article  CAS  PubMed  Google Scholar 

  109. Vorndran E, Klammert U, Ewald A, Barralet JE, Gbureck U (2010) Simultaneous immobilization of bioactives during 3D powder printing of bioceramic drug-release matrices. Adv Funct Mater 20(10):1585–1591

    Article  CAS  Google Scholar 

  110. Morris VB, Nimbalkar S, Younesi M, McClellan P, Akkus O (2017) Mechanical properties, cytocompatibility and manufacturability of chitosan:PEGDA hybrid-gel scaffolds by stereolithography. Ann Biomed Eng 45(1):286–296

    Article  PubMed  Google Scholar 

  111. Cebe T, Ahuja N, Monte F, Awad K, Vyavhare K, Aswath P, Huang J, Brotto M, Varanasi V (2020) Novel 3D-printed methacrylated chitosan-laponite nanosilicate composite scaffolds enhance cell growth and biomineral formation in MC3T3 pre-osteoblasts. J Mater Res 35(1):58–75

    Article  CAS  Google Scholar 

  112. Dadhich P, Das B, Pal P, Srivas PK, Dutta J, Ray S, Dhara S (2016) A simple approach for an eggshell-based 3D-printed osteoinductive multiphasic calcium phosphate scaffold. ACS Appl Mater Interfaces 8(19):11910–11924

    Article  CAS  PubMed  Google Scholar 

  113. Janarthanan G, Tran HN, Cha E, Lee C, Das D, Noh I (2020) 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications. Mater Sci Eng C 113

    Google Scholar 

  114. Andriotis EG, Eleftheriadis GK, Karavasili C, Fatouros DG (2020) Development of bio-active patches based on pectin for the treatment of ulcers and wounds using 3D-bioprinting technology. Pharmaceutics 12(1)

    Google Scholar 

  115. Chen T, Zou Q, Du C, Wang C, Li Y, Fu B (2020) Biodegradable 3D printed HA/CMCS/PDA scaffold for repairing lacunar bone defect. Mater Sci Eng C 116

    Google Scholar 

  116. Rojas-Martínez LE, Flores-Hernandez CG, López-Marín LM, Martinez-Hernandez AL, Thorat SB, Reyes Vasquez CD, Del Rio-Castillo AE, Velasco-Santos C (2020) 3D printing of PLA composites scaffolds reinforced with keratin and chitosan: effect of geometry and structure. Eur Polym J 141

    Google Scholar 

  117. Sun K, Li R, Li H, Li D, Jiang W (2018) Comparison of three-dimensional printing for fabricating silk fibroin-blended scaffolds. Int J Polym Mater Polym Biomater 67(8):480–486

    Article  CAS  Google Scholar 

  118. Ulag S, Kalkandelen C, Oktar FN, Uzun M, Sahin YM, Karademir B, Arslan S, Ozbolat IT, Mahirogullari M, Gunduz O (2019) 3D printing artificial blood vessel constructs using PCL/chitosan/hydrogel biocomposites. ChemistrySelect 4(8):2387–2391

    Article  CAS  Google Scholar 

  119. Parkatzidis K, Chatzinikolaidou M, Kaliva M, Bakopoulou A, Farsari M, Vamvakaki M (2019) Multiphoton 3D printing of biopolymer-based hydrogels. ACS Biomater Sci Eng 5(11):6161–6170

    Article  CAS  PubMed  Google Scholar 

  120. Sayyar S, Gambhir S, Chung J, Officer DL, Wallace GG (2017) 3D printable conducting hydrogels containing chemically converted graphene. Nanoscale 9(5):2038–2050

    Article  CAS  PubMed  Google Scholar 

  121. Lee CM, Yang SW, Jung SC, Kim BH (2017) Oxygen plasma treatment on 3D-printed chitosan/gelatin/hydroxyapatite scaffolds for bone tissue engineering. J Nanosci Nanotechnol 17(4):2747–2750

    Article  CAS  PubMed  Google Scholar 

  122. Li C, Wang K, Zhou X, Li T, Xu Y, Qiang L, Peng M, Xu Y, **e L, He C, Wang B, Wang J (2019) Controllable fabrication of hydroxybutyl chitosan/oxidized chondroitin sulfate hydrogels by 3D bioprinting technique for cartilage tissue engineering. Biomed Mater 14(2)

    Google Scholar 

  123. Kim SW, Kim DY, Roh HH, Kim HS, Lee JW, Lee KY (2019) Three-dimensional bioprinting of cell-laden constructs using polysaccharide-based self-healing hydrogels. Biomacromolecules 20(5):1860–1866

    Article  CAS  PubMed  Google Scholar 

  124. Hu X, Man Y, Li W, Li L, Xu J, Parungao R, Wang Y, Zheng S, Nie Y, Liu T, Song K (2019) 3D bio-printing of CS/Gel/HA/Gr hybrid osteochondral scaffolds. Polymers 11(10)

    Google Scholar 

  125. Cheng YL, Chen F (2017) Preparation and characterization of photocured poly (ε-caprolactone) diacrylate/poly (ethylene glycol) diacrylate/chitosan for photopolymerization-type 3D printing tissue engineering scaffold application. Mater Sci Eng C 81:66–73

    Article  CAS  Google Scholar 

  126. Hu T, Cui X, Zhu M, Wu M, Tian Y, Yao B, Song W, Niu Z, Huang S, Fu X (2020) 3D-printable supramolecular hydrogels with shear-thinning property: fabricating strength tunable bioink via dual crosslinking. Bioact Mater 5(4):808–818

    Article  PubMed  PubMed Central  Google Scholar 

  127. Wang Y, Yi S, Lu R, Sameen DE, Ahmed S, Dai J, Qin W, Li S, Liu Y (2021) Preparation, characterization, and 3D printing verification of chitosan/halloysite nanotubes/tea polyphenol nanocomposite films. Int J Biol Macromol 166:32–44

    Article  CAS  PubMed  Google Scholar 

  128. Deng N, Sun J, Li Y, Chen L, Chen C, Wu Y, Wang Z, Li L (2019) Experimental study of rhBMP-2 chitosan nano-sustained release carrier-loaded PLGA/nHA scaffolds to construct mandibular tissue-engineered bone. Arch Oral Biol 102:16–25

    Article  CAS  PubMed  Google Scholar 

  129. Thunsiri K, Pitjamit S, Pothacharoen P, Pruksakorn D, Nakkiew W, Wattanutchariya W (2020) The 3D-printed bilayer’s bioactive-biomaterials scaffold for full-thickness articular cartilage defects treatment. Materials (Basel) 13(15):1–26

    Article  CAS  Google Scholar 

  130. Wang H, Wu G, Zhang J, Zhou K, Yin B, Su X, Qiu G, Yang G, Zhang X, Zhou G, Wu Z (2016) Osteogenic effect of controlled released rhBMP-2 in 3D printed porous hydroxyapatite scaffold. Colloids Surf B Biointerfaces 141:491–498

    Article  CAS  PubMed  Google Scholar 

  131. Gu Q, Tomaskovic-Crook E, Lozano R, Chen Y, Kapsa RM, Zhou Q, Wallace GG, Crook JM (2016) Functional 3D neural mini-tissues from printed gel-based bioink and human neural stem cells. Adv Healthc Mater 5(12):1429–1438

    Article  CAS  PubMed  Google Scholar 

  132. Wong CW, Chen YT, Chien CL, Yu TY, Rwei SP, Hsu SH (2018) A simple and efficient feeder-free culture system to up-scale iPSCs on polymeric material surface for use in 3D bioprinting. Mater Sci Eng C 82:69–79

    Article  CAS  Google Scholar 

  133. Schneider M, Günter C, Taubert A (2018) Co-deposition of a hydrogel/calcium phosphate hybrid layer on 3D printed poly(lactic acid) scaffolds via dip coating: towards automated biomaterials fabrication. Polymers 10(3)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Post-Doctor Research Program (2017) through Incheon National University (INU), Incheon, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Suk Shim or Jayachandran Venkatesan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murugan, S.S., Anil, S., Sivakumar, P., Shim, M.S., Venkatesan, J. (2021). 3D-Printed Chitosan Composites for Biomedical Applications. In: Jayakumar, R., Prabaharan, M. (eds) Chitosan for Biomaterials IV. Advances in Polymer Science, vol 288. Springer, Cham. https://doi.org/10.1007/12_2021_101

Download citation

Publish with us

Policies and ethics

Navigation