Ion Mobility Spectrometry in Clinical and Emergency Setting: Research and Potential Applications

  • Chapter
  • First Online:
Breath Analysis

Part of the book series: Bioanalytical Reviews ((BIOREV,volume 4))

Abstract

Interest in the use of GC-IMS for the detection of volatiles has seen a rapid expansion over the last decade. The following chapter will focus on classical GC-IMS and its research applications in the potential for diagnosis, rapid testing and biomarker discovery, with an emphasis on breath testing. Breath analysis via GC-IMS has enormous potential in many clinical areas including screening for pulmonary diseases, infections and toxins. Due to the technology’s small footprint, robustness in various environments and ease of use, there have been many studies looking at its potential utility in the clinical field, including its use as a screening tool for SARS-CoV-2 infections. There remain limitations to the device usage and data processing which are discussed throughout the chapter. An introduction to its fundamentals, standardisation, breath collection methods and active areas of research and development will be covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 245.03
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 320.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 320.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note: The extensive review on the studies of those effects and the IMS principles in general, its history and applications and future perspective can be found in “Ion Mobility Spectrometry” by G.A. Eiceman, Z. Karpas, and Herbert H. Hill, Jr. [5] an important and complete reference on GC-IMS technique.

References

  1. Cohen MJ, Karasek FW (1970) Plasma chromatographytm – a new dimension for gas chromatography and mass spectrometry. J Chromatogr Sci 8:330

    Article  CAS  Google Scholar 

  2. Kanu AB, Hill Jr HH (2007) Identity confirmation of drugs and explosives in ion mobility spectrometry using a secondary drift gas. Talanta 73(4):692–699

    Article  CAS  PubMed  Google Scholar 

  3. Cohen MJ, Karasek FW (1970) Plasma chromatography™ – a new dimension for gas chromatography and mass spectrometry. J Chromatogr Sci 8(6):330–337

    Article  CAS  Google Scholar 

  4. Revercomb HE, Mason EA (1975) Theory of plasma chromatography/gaseous electrophoresis. Review. Anal Chem 47(7):970–983

    Article  CAS  Google Scholar 

  5. Eiceman GA, Karpas Z (2005) Ion mobility spectrometry. CRC Press

    Book  Google Scholar 

  6. Davis C, Pleil J, Beauchamp J (eds) (2020) Breathborne biomarkers and the human volatilome

    Google Scholar 

  7. Daulton E et al (2021) Volatile organic compounds (VOCs) for the non-invasive detection of pancreatic cancer from urine. Talanta 221:121604

    Article  CAS  PubMed  Google Scholar 

  8. Tyagi H et al (2021) Urinary volatiles and chemical characterisation for the non-invasive detection of prostate and bladder cancers. Biosensors 11(11):437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Daulton E et al (2020) The detection of wound infection by ion mobility chemical analysis. Biosensors 10(3):19

    Article  CAS  PubMed Central  Google Scholar 

  10. Lacey L et al (2020) Detection of group B Streptococcus in pregnancy by vaginal volatile organic compound analysis: a prospective exploratory study. Transl Res 216:23–29

    Article  CAS  PubMed  Google Scholar 

  11. Drees C, Vautz W, Liedtke S et al (2019) GC-IMS headspace analyses allow early recognition of bacterial growth and rapid pathogen differentiation in standard blood cultures. Appl Microbiol Biotechnol 103:9091–9101

    Article  CAS  PubMed  Google Scholar 

  12. Fabio DF et al (2008) Implementation of Fowler’s method for end-tidal air sampling. J Breath Res 2(3):037009

    Article  Google Scholar 

  13. Myers R et al (2022) Breath collection protocol for SARS-CoV-2 testing in an ambulatory setting. J Breath Res 16(2):027105

    Article  CAS  Google Scholar 

  14. Ruszkiewicz DM et al (2022) Peppermint protocol: first results for gas chromatography-ion mobility spectrometry. J Breath Res 16(3):036004

    Article  Google Scholar 

  15. Ghimenti S et al (2015) Comparison of sampling bags for the analysis of volatile organic compounds in breath. J Breath Res 9(4):047110

    Article  CAS  PubMed  Google Scholar 

  16. Vautz W et al (2014) GC/IMS and GC/MS analysis of pre-concentrated medical and biological samples. Int J Ion Mobil Spectrom 17(1):25–33

    Article  CAS  Google Scholar 

  17. Horváth I et al (2017) A European Respiratory Society technical standard: exhaled biomarkers in lung disease. Eur Respir J 49:4

    Article  Google Scholar 

  18. Henderson B et al (2020) A benchmarking protocol for breath analysis: the peppermint experiment. J Breath Res 14(4):046008

    Article  CAS  PubMed  Google Scholar 

  19. Wilkinson M et al (2021) The peppermint breath test: a benchmarking protocol for breath sampling and analysis using GC–MS. J Breath Res 15(2):026006

    Article  Google Scholar 

  20. Hovda KE, Urdal P, Jacobsen D (2005) Increased serum formate in the diagnosis of methanol poisoning. J Anal Toxicol 29(6):586–588

    Article  CAS  PubMed  Google Scholar 

  21. Helge Hunderi O, Hovda KE, Jacobsen D (2006) Use of the osmolal gap to guide the start and duration of dialysis in methanol poisoning. Scand J Urol Nephrol 40(1):70–74

    Article  CAS  Google Scholar 

  22. Kraut JA, Mullins ME (2018) Toxic alcohols. N Engl J Med 378(3):270–280. https://doi.org/10.1056/NEJMra1615295. Erratum in: N Engl J Med. 2019 Jan 10;380(2):202

    Article  CAS  PubMed  Google Scholar 

  23. “Ion mobility spectrometry in clinical setting” – talk given on 16th of February 2022 at RSC molecular spectroscopy group meeting

    Google Scholar 

  24. Phillips M et al (2013) Detection of volatile biomarkers of therapeutic radiation in breath. J Breath Res 7(3):036002

    Article  CAS  PubMed  Google Scholar 

  25. Salman D et al (2020) Breath markers for therapeutic radiation. J Breath Res 15(1):016004

    Article  PubMed  Google Scholar 

  26. Toxi-Triage. http://toxi-triage.eu

  27. Okumura T et al (1996) Report on 640 victims of the Tokyo subway sarin attack. Ann Emerg Med 28(2):129–135

    Article  CAS  PubMed  Google Scholar 

  28. John H et al (2018) Fatal sarin poisoning in Syria 2013: forensic verification within an international laboratory network. Forensic Toxicol 36(1):61–71

    Article  CAS  PubMed  Google Scholar 

  29. (2018) Organisation for the prohibition of chemical weapons. Fact sheet 4. What is a chemical weapon? OPCW, The Hague

    Google Scholar 

  30. Tomassoni AJ, French RNE, Walter FG (2015) Toxic industrial chemicals and chemical weapons: exposure, identification, and management by syndrome. Emerg Med Clin 33(1):13–36

    Article  Google Scholar 

  31. North CS, Pfefferbaum B, Vythilingam M, Martin GJ, Schorr JK, Boudreaux AS, Spitznagel EL, Hong BA (2009) Exposure to bioterrorism and mental health response among staff on Capitol Hill. Biosecur Bioterror: Biodefense Strat Pract Sci 7

    Google Scholar 

  32. Ruszkiewicz DM et al (2020) Diagnosis of COVID-19 by analysis of breath with gas chromatography-ion mobility spectrometry – a feasibility study. EClinicalMedicine 29:100609

    Article  PubMed  Google Scholar 

  33. Subali AD et al (2022) The potential of volatile organic compounds-based breath analysis for COVID-19 screening: a systematic review & meta-analysis. Diagn Microbiol Infect Dis 102(2):115589

    Article  CAS  PubMed  Google Scholar 

  34. Myers R (2022) Detection of mild SARS-CoV2 infection in out-patients. IABR breath summit 2022 Pisa, Italy

    Google Scholar 

  35. Nazareth J et al (2022) Discriminatory ability of gas chromatography-ion mobility spectrometry to identify patients hospitalised with COVID-19 and predict prognosis. medRxiv

    Google Scholar 

  36. Bannaga AS et al (2021) Exploratory study using urinary volatile organic compounds for the detection of hepatocellular carcinoma. Molecules 9:2447

    Article  Google Scholar 

  37. Chen H et al (2021) COVID-19 screening using breath-borne volatile organic compounds. J Breath Res 15:047104

    CAS  Google Scholar 

  38. Ratiu IA et al (2020) Volatile organic compounds in exhaled breath as fingerprints of lung cancer, asthma and COPD. J Clin Med 10(1):32

    Article  PubMed Central  Google Scholar 

  39. Jiang D et al (2021) Breath-by-breath measurement of intraoperative propofol by unidirectional anisole-assisted photoionization ion mobility spectrometry via real-time correction of humidity. Anal Chim Acta 1150:338223

    Article  CAS  PubMed  Google Scholar 

  40. Heiderich S et al (2021) Correlation of exhaled propofol with Narcotrend index and calculated propofol plasma levels in children undergoing surgery under total intravenous anesthesia-an observational study. BMC Anesthesiol 21(1):1–9

    Article  Google Scholar 

  41. Shokri H et al (2020) Field induced fragmentation (Fif) spectra of oxygen containing volatile organic compounds with reactive stage tandem ion mobility spectrometry and functional group classification by neural network analysis. Anal Chem 92(8):5862–5870

    Article  CAS  PubMed  Google Scholar 

  42. Shokri H et al (2021) Successive reactions in field induced fragmentation spectra from tandem ion mobility spectrometry at ambient pressure and their influence on classification by neural networks. Int J Mass Spectrom 470:116701

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge: Prof. CL Paul Thomas from Loughborough University (UK) – coordinator of the Toxi-Triage project along with Prof. Michael Eddleston, Dr. Bill Nailon and Dr. Duncan McLaren (Edinburgh University UK and Western General Hospital Edinburgh) and Prof. Knut Erik Hovda (Norwegian National Unit for CBRNE Medicine and Oslo University Hospital Norway) – coordinators of the clinical studies for sharing data for this chapter. We also acknowledge the clinical research staff including Yvonee (Norway), Kareen Darnley (Edinburgh) and Dr. Chenery Lin from General Hospital in Jakarta (Indonesia) for their research/data contributions. We would also like to thank Dr. James Covington (Warwick University) for sharing his work on a data pipeline for GC-IMS processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renelle Myers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruszkiewicz, D.M., Meister, A., Myers, R. (2022). Ion Mobility Spectrometry in Clinical and Emergency Setting: Research and Potential Applications. In: Weigl, S. (eds) Breath Analysis . Bioanalytical Reviews, vol 4. Springer, Cham. https://doi.org/10.1007/11663_2022_20

Download citation

Publish with us

Policies and ethics

Navigation