Correlating Scanning Ion Conductance and Super-Resolved Fluorescence Microscopy

  • Chapter
  • First Online:
Scanning Ion Conductance Microscopy

Part of the book series: Bioanalytical Reviews ((BIOREV,volume 3))

  • 308 Accesses

Abstract

The development of diffraction-unlimited fluorescence microscopy has paved the way for a detailed understanding of cellular dynamics since live-cell investigations with resolutions below 100 nm have become available. This allows studying labelled specimen such as proteins and their distribution within a cell at a new level of detail. However, examining the cell membrane as a site of interaction between the cell’s internal processes and external signals with fluorescence microscopy (FM) leads to the difficulty that certain types of fluorescent dyes can alter the physicochemical properties of a cell. Investigating the cell membrane in a contact-free way and without any labelling or special pre-treatment is one of the greatest strengths of scanning ion conductance microscopy (SICM), which uses a fine pipette tip to determine the specimen’s topography. Since FM and SICM can both be applied to living cells and provide a resolution below the diffraction limit, correlating data from these two techniques seems to be a promising approach to further the understanding of the cell membrane’s organization and the mechanisms involved in transport processes across it. In the following, we briefly introduce the different approaches to super-resolved fluorescence microscopy (SRFM) and review applications of correlating SICM and FM (diffraction-limited) as well as SICM and SRFM (diffraction-unlimited). Finally, we discuss potential implementations of combined SRFM/SICM instruments and pitfalls that may arise during the development of such instruments.

Patrick Happel, (deceased), Happel wrote this chapter while at Nanoscopy Group, RUBION, Ruhr-Universitðt Bochum, Bochum, Germany

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hansma PK, Drake B, Marti O, Gould SA, Prater CB (1989) Science 243(4891):641. https://doi.org/10.1126/science.2464851

    Article  CAS  PubMed  Google Scholar 

  2. Rheinlaender J, Schäffer TE (2009) J Appl Phys 105(9):094905. https://doi.org/10.1063/1.3122007

    Article  CAS  Google Scholar 

  3. Rheinlaender J, Schäffer TE (2015) Anal Chem 87(14):7117–7124. https://doi.org/10.1021/acs.analchem.5b00900

    Article  CAS  PubMed  Google Scholar 

  4. Shevchuk AI, Frolenkov GI, Sánchez D, James PS, Freedman N, Lab MJ, Jones R, Klenerman D, Korchev YE (2006) Angew Chem Int Ed Engl 45(14):2212. https://doi.org/10.1002/anie.200503915

    Article  CAS  PubMed  Google Scholar 

  5. Abbe E (1873) Arch Mikrosk Anat 9:413

    Article  Google Scholar 

  6. Hagemann P, Gesper A, Happel P (2018) ACS Nano 12(6):5807. https://doi.org/10.1021/acsnano.8b01731

    Article  CAS  PubMed  Google Scholar 

  7. Heimstädt O (1911) Zeitschrift für wissenschaftliche Mikroskopie 28:330–337

    Google Scholar 

  8. Minsky M (1988) Scanning 10(4):128. https://doi.org/10.1002/sca.4950100403

    Article  Google Scholar 

  9. Hell SW, Lindek S, Cremer C, Stelzer EHK (1994) Opt Lett 19(3):222. https://doi.org/10.1364/ol.19.000222

    Article  CAS  PubMed  Google Scholar 

  10. Guerra JM (1995) Appl Phys Lett 66(26):3555. https://doi.org/10.1063/1.113814

    Article  CAS  Google Scholar 

  11. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Science 313(5793):1642. https://doi.org/10.1126/science.1127344

    Article  PubMed  Google Scholar 

  12. Wiedenmann J, Ivanchenko S, Oswald F, Schmitt F, Rocker C, Salih A, Spindler KD, Nienhaus GU (2004) Proc Natl Acad Sci 101(45):15905. https://doi.org/10.1073/pnas.0403668101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hess ST, Girirajan TP, Mason MD (2006) Biophys J 91(11):4258. https://doi.org/10.1529/biophysj.106.091116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rust MJ, Bates M, Zhuang X (2006) Nat Methods 3(10):793. https://doi.org/10.1038/nmeth929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mortensen KI, Churchman LS, Spudich JA, Flyvbjerg H (2010) Nat Methods 7(5):377. https://doi.org/10.1038/nmeth.1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Patterson G, Davidson M, Manley S, Lippincott-Schwartz J (2010) Annu Rev Phys Chem 61(1):345. https://doi.org/10.1146/annurev.physchem.012809.103444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sengupta P, van Engelenburg SB, Lippincott-Schwartz J (2014) Chem Rev 114(6):3189. https://doi.org/10.1021/cr400614m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu Z, Lavis LD, Betzig E (2015) Mol Cell 58(4):644. https://doi.org/10.1016/j.molcel.2015.02.033

    Article  CAS  PubMed  Google Scholar 

  19. Sauer M, Heilemann M (2017) Chem Rev 117(11):7478. https://doi.org/10.1021/acs.chemrev.6b00667

    Article  CAS  PubMed  Google Scholar 

  20. Li H, Vaughan JC (2018) Chem Rev 118(18):9412. https://doi.org/10.1021/acs.chemrev.7b00767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gould TJ, Verkhusha VV, Hess ST (2009) Nat Protoc 4(3):291. https://doi.org/10.1038/nprot.2008.246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schermelleh L, Heintzmann R, Leonhardt H (2010) J Cell Biol 190(2):165. https://doi.org/10.1083/jcb.201002018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van de Linde S, Löschberger A, Klein T, Heidbreder M, Wolter S, Heilemann M, Sauer M (2011) Nat Protoc 6(7):991–1009. https://doi.org/10.1038/nprot.2011.336

    Article  CAS  PubMed  Google Scholar 

  24. Ambrose EJ (1956) Nature 178(4543):1194. https://doi.org/10.1038/1781194a0

    Article  CAS  PubMed  Google Scholar 

  25. Axelrod D (1981) J Cell Biol 89(1):141. https://doi.org/10.1083/jcb.89.1.141

    Article  CAS  PubMed  Google Scholar 

  26. Hell S, Wichmann J (1994) Opt Lett 19:780. https://doi.org/10.1364/ol.19.000780

    Article  CAS  PubMed  Google Scholar 

  27. Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Proc Natl Acad Sci U S A 97(15):8206. https://doi.org/10.1073/pnas.97.15.8206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hell SW, Kroug M (1995) Appl Phys B Lasers Opt 60:495. https://doi.org/10.1007/BF01081333

    Article  Google Scholar 

  29. Bretschneider S, Eggeling C, Hell SW (2007) Phys Rev Lett 98(21):218103. https://doi.org/10.1103/PhysRevLett.98.218103

    Article  CAS  PubMed  Google Scholar 

  30. Hofmann M, Eggeling C, Jakobs S, Hell SW (2005) Proc Natl Acad Sci U S A 102(49):17565. https://doi.org/10.1073/pnas.0506010102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harke B, Keller J, Ullal CK, Westphal V, Schönle A, Hell SW (2008) Opt Express 16(6):4154. https://doi.org/10.1364/oe.16.004154

    Article  PubMed  Google Scholar 

  32. Wildanger D, Patton BR, Schill H, Marseglia L, Hadden JP, Knauer S, Schönle A, Rarity JG, O’Brien JL, Hell SW, Smith JM (2012) Adv Mater 24(44):OP309. https://doi.org/10.1002/adma.201203033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Harke B, Ullal CK, Keller J, Hell SW (2008) Nano Lett 8(5):1309. https://doi.org/10.1021/nl073164n

    Article  CAS  PubMed  Google Scholar 

  34. Wildanger D, Medda R, Kastrup L, Hell SW (2009) J Microsc 236(1):35. https://doi.org/10.1111/j.1365-2818.2009.03188.x

    Article  CAS  PubMed  Google Scholar 

  35. Turkowyd B, Virant D, Endesfelder U (2016) Anal Bioanal Chem 408(25):6885. https://doi.org/10.1007/s00216-016-9781-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Blom H, Widengren J (2017) Chem Rev 117(11):7377. https://doi.org/10.1021/acs.chemrev.6b00653

    Article  CAS  PubMed  Google Scholar 

  37. Sahl SJ, Hell SW (2019) High resolution imaging in microscopy and ophthalmology. Springer, pp 3–32. https://doi.org/10.1007/978-3-030-16638-0_1

    Book  Google Scholar 

  38. Gesper A, Hagemann P, Happel P (2017) Nanoscale 9:14172. https://doi.org/10.1039/c7nr04306f

    Article  CAS  PubMed  Google Scholar 

  39. Lee Y, Jung GE, Cho SJ, Geckeler KE, Fuchs H (2013) Nanoscale 5(18):8577. https://doi.org/10.1039/c3nr02665e

    Article  CAS  PubMed  Google Scholar 

  40. Lyon AR, MacLeod KT, Zhang Y, Garcia E, Kanda GK, Lab MJ, Korchev YE, Harding SE, Gorelik J (2009) Proc Natl Acad Sci U S A 106(16):6854. https://doi.org/10.1073/pnas.0809777106

    Article  PubMed  PubMed Central  Google Scholar 

  41. Korchev YE, Gorelik J, Lab MJ, Sviderskaya EV, Johnston CL, Coombes CR, Vodyanoy I, Edwards CR (2000) Biophys J 78(1):451–457. https://doi.org/10.1016/S0006-3495(00)76607-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shevchuk AI, Gorelik J, Harding SE, Lab MJ, Klenerman D, Korchev YE (2001) Biophys J 81(3):1759. https://doi.org/10.1016/S0006-3495(01)75826-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rothery AM, Gorelik J, Bruckbauer A, Yu W, Korchev YE, Klenerman D (2003) J Microsc 209(Pt 2):94. https://doi.org/10.1046/j.1365-2818.2003.01122.x

    Article  CAS  PubMed  Google Scholar 

  44. Bruckbauer A, Ying L, Rothery AM, Zhou D, Shevchuk AI, Abell C, Korchev YE, Klenerman D (2002) J Am Chem Soc 124(30):8810. https://doi.org/10.1021/ja026816c

    Article  CAS  PubMed  Google Scholar 

  45. Ying L, Bruckbauer A, Rothery AM, Korchev YE, Klenerman D (2002) Anal Chem 74(6):1380. https://doi.org/10.1021/ac015674m

    Article  CAS  PubMed  Google Scholar 

  46. Bruckbauer A, James P, Zhou D, Yoon JW, Excell D, Korchev Y, Jones R, Klenerman D (2007) Biophys J 93(9):3120. https://doi.org/10.1529/biophysj.107.104737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bruckbauer A, Dunne PD, James P, Howes E, Zhou D, Jones R, Klenerman D (2010) Biophys J 99(1):L1. https://doi.org/10.1016/j.bpj.2010.03.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hennig S, van de Linde S, Bergmann S, Huser T, Sauer M (2015) ACS Nano 9(8):8122. https://doi.org/10.1021/acsnano.5b02220

    Article  CAS  PubMed  Google Scholar 

  49. Hennig S, van de Linde S, Lummer M, Simonis M, Huser T, Sauer M (2015) Nano Lett 15(2):1374. https://doi.org/10.1021/nl504660t

    Article  CAS  PubMed  Google Scholar 

  50. Piper JD, Clarke RW, Korchev YE, Ying L, Klenerman D (2006) J Am Chem Soc 128(51):16462. https://doi.org/10.1021/ja0650899

    Article  CAS  PubMed  Google Scholar 

  51. Fuentes DE, Butler PJ (2012) Cell Mol Bioeng 5(2):143. https://doi.org/10.1007/s12195-012-0225-z

    Article  CAS  PubMed  Google Scholar 

  52. Wang K, Zhou L, Li J, Liu W, Wei Y, Guo Z, Fan C, Hu J, Li B, Wang L (2020) Nano Lett 20(9):6313. https://doi.org/10.1021/acs.nanolett.0c01735

    Article  CAS  PubMed  Google Scholar 

  53. Scheenen WJ, Celikel T (2015) Synapse 69(5):233–241. https://doi.org/10.1002/syn.21807

    Article  CAS  PubMed  Google Scholar 

  54. Novak P, Gorelik J, Vivekananda U, Shevchuk AI, Ermolyuk YS, Bailey RJ, Bushby AJ, Moss GWJ, Rusakov DA, Klenerman D, Kullmann DM, Volynski KE, Korchev YE (2013) Neuron 79(6):1067. https://doi.org/10.1016/j.neuron.2013.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhou Y, Saito M, Miyamoto T, Novak P, Shevchuk AI, Korchev YE, Fukuma T, Takahashi Y (2018) Anal Chem 90(4):2891. https://doi.org/10.1021/acs.analchem.7b05112

    Article  CAS  PubMed  Google Scholar 

  56. Nikolaev VO, Moshkov A, Lyon AR, Miragoli M, Novak P, Paur H, Lohse MJ, Korchev YE, Harding SE, Gorelik J (2010) Science 327(5973):1653. https://doi.org/10.1126/science.1185988

    Article  CAS  PubMed  Google Scholar 

  57. Dutta AK, Korchev YE, Shevchuk AI, Hayashi S, Okada Y, Sabirov RZ (2008) Biophys J 94(5):1646–1655. https://doi.org/10.1529/biophysj.107.117820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wright PT, Sanchez-Alonso JL, Lucarelli C, Alvarez-Laviada A, Poulet CE, Bello SO, Faggian G, Terracciano CM, Gorelik J (2018) Front Physiol 9. https://doi.org/10.3389/fphys.2018.01302

  59. Schobesberger S, Wright PT, Poulet C, Mardones JLSA, Mansfield C, Friebe A, Harding SE, Balligand JL, Nikolaev VO, Gorelik J (2020) eLife 9. https://doi.org/10.7554/elife.52221

  60. Seifert J, Rheinlaender J, Lang F, Gawaz M, Schäffer TE (2017) Sci Rep 7:4810. https://doi.org/10.1038/s41598-017-04999-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schultz F, Swiatlowska P, Alvarez-Laviada A, Sanchez-Alonso JL, Song Q, Vries AAF, Pijnappels DA, Ongstad E, Braga VMM, Entcheva E, Gourdie RG, Miragoli M, Gorelik J (2019) FASEB J 33(9):10453. https://doi.org/10.1096/fj.201802740rr

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fishman GI, Eddy RL, Shows TB, Rosenthal L, Leinwand LA (1991) Genomics 10(1):250–256. https://doi.org/10.1016/0888-7543(91)90507-b

    Article  CAS  PubMed  Google Scholar 

  63. Beyer EC, Paul DL, Goodenough DA (1987) J Cell Biol 105(6):2621–2629. https://doi.org/10.1083/jcb.105.6.2621

    Article  CAS  PubMed  Google Scholar 

  64. Takahashi Y, Zhou Y, Miyamoto T, Higashi H, Nakamichi N, Takeda Y, Kato Y, Korchev Y, Fukuma T (2019) Anal Chem 92(2):2159. https://doi.org/10.1021/acs.analchem.9b04775

    Article  CAS  PubMed  Google Scholar 

  65. Bednarska J, Pelchen-Matthews A, Novak P, Burden JJ, Summers PA, Kuimova MK, Korchev Y, Marsh M, Shevchuk A (2020) Proc Natl Acad Sci 117(35):21637. https://doi.org/10.1073/pnas.2008156117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jouvenet N, Bieniasz PD, Simon SM (2008) Nature 454(7201):236. https://doi.org/10.1038/nature06998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gorelik J, Shevchuk A, Ramalho M, Elliott M, Lei C, Higgins CF, Lab MJ, Klenerman D, Krauzewicz N, Korchev Y (2002) Proc Natl Acad Sci U S A 99(25):16018. https://doi.org/10.1073/pnas.252458399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shevchuk AI, Novak P, Velazquez MA, Fleming TP, Korchev YE (2013) J Opt 15(9):094005. https://doi.org/10.1088/2040-8978/15/9/094005

    Article  CAS  Google Scholar 

  69. Jensen FC, Girardi AJ, Gilden RV, Koprowski H (1964) Proc Natl Acad Sci U S A 52(1):53–59. https://doi.org/10.1073/pnas.52.1.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gluzman Y (1981) Cell 23(1):175–182. https://doi.org/10.1016/0092-8674(81)90282-8

    Article  CAS  PubMed  Google Scholar 

  71. Shevchuk AI, Hobson P, Lab MJ, Klenerman D, Krauzewicz N, Korchev YE (2008) Pflugers Arch 456(1):227. https://doi.org/10.1007/s00424-007-0410-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shevchuk AI, Novak P, Taylor M, Diakonov IA, Ziyadeh-Isleem A, Bitoun M, Guicheney P, Lab MJ, Gorelik J, Merrifield CJ, Klenerman D, Korchev YE (2012) J Cell Biol 197(4):499. https://doi.org/10.1083/jcb.201109130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ali T, Bednarska J, Vassilopoulos S, Tran M, Diakonov IA, Ziyadeh-Isleem A, Guicheney P, Gorelik J, Korchev YE, Reilly MM, Bitoun M, Shevchuk A (2019) FASEB J 33(7):8504. https://doi.org/10.1096/fj.201802635r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kemp SJ, Thorley AJ, Gorelik J, Seckl MJ, O’Hare MJ, Arcaro A, Korchev Y, Goldstraw P, Tetley TD (2008) Am J Respir Cell Mol Biol 39(5):591. https://doi.org/10.1165/rcmb.2007-0334OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Novak P, Shevchuk A, Ruenraroengsak P, Miragoli M, Thorley AJ, Klenerman D, Lab MJ, Tetley TD, Gorelik J, Korchev YE (2014) Nano Lett 14(3):1202. https://doi.org/10.1021/nl404068p

    Article  CAS  PubMed  Google Scholar 

  76. Bednarska J, Novak P, Korchev Y, Rorsman P, Tarasov AI, Shevchuk A (2021) J Microsc 282(1):21–29. https://doi.org/10.1111/jmi.12972

    Article  CAS  PubMed  Google Scholar 

  77. Gorelik J, Ali NN, SheikhAbdul Kadir SH, Lab M, Stojkovic P, Armstrong L, Sviderskaya EV, Negulyaev YA, Klenerman D, Bennett DC, Lako M, Harding SE, Stojkovic M, Korchev YE (2008) Tissue Eng Part C Methods 14(4):311. https://doi.org/10.1089/ten.tec.2008.0058

    Article  PubMed  Google Scholar 

  78. Babakinejad B, Jönsson P, Córdoba AL, Actis P, Novak P, Takahashi Y, Shevshuk A, Anand U, Anand P, Drews A, Ferrer-Montiel A, Klenerman D, Korchev YE (2013) Anal Chem 85(19):9333–9342. https://doi.org/10.1021/ac4021769

    Article  CAS  PubMed  Google Scholar 

  79. Lyon AR, Nikolaev VO, Miragoli M, Sikkel MB, Paur H, Benard L, Hulot JS, Kohlbrenner E, Hajjar RJ, Peters NS, Korchev YE, Macleod KT, Harding SE, Gorelik J (2012) Circ Heart Fail 5(3):357. https://doi.org/10.1161/CIRCHEARTFAILURE.111.964692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Miragoli M, Sanchez-Alonso J, Bhargava A, Wright P, Sikkel M, Schobesberger S, Diakonov I, Novak P, Castaldi A, Cattaneo P et al (2016) Cell Rep 14(1):140–151. https://doi.org/10.1016/j.celrep.2015.12.014

    Article  CAS  PubMed  Google Scholar 

  81. Ida H, Takahashi Y, Kumatani A, Shiku H, Murayama T, Hirose H, Futaki S, Matsue T (2021) Anal Chem 93(13):5383–5393. https://doi.org/10.1021/acs.analchem.0c04097

    Article  CAS  PubMed  Google Scholar 

  82. Nakano A (2002) Cell Struct Funct 27(5):349–355. https://doi.org/10.1247/csf.27.349

    Article  PubMed  Google Scholar 

  83. Navikas V, Leitao SM, Grussmayer KS, Descloux A, Drake B, Yserentant K, Werther P, Herten DP, Wombacher R, Radenovic A, Fantner GE (2021) Nat Commun 12(1):4565. https://doi.org/10.1038/s41467-021-24901-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J (2009) Proc Natl Acad Sci U S A 106(52):22287–22292. https://doi.org/10.1073/pnas.0907866106

    Article  PubMed  PubMed Central  Google Scholar 

  85. Geissbuehler S, Sharipov A, Godinat A, Bocchio NL, Sandoz PA, Huss A, Jensen NA, Jakobs S, Enderlein J, Gisou F, van der Goot EA, Dubikovskaya T, Lasser ML (2014) Nat Commun 5:5830. https://doi.org/10.1038/ncomms6830

    Article  PubMed  Google Scholar 

  86. Harke B, Chacko JV, Haschke H, Canale C, Diaspro A (2012) Opt Nanosc 1(1):3. https://doi.org/10.1186/2192-2853-1-3

    Article  Google Scholar 

  87. Chacko JV, Zanacchi FC, Diaspro A (2013) Cytoskeleton 70(11):729. https://doi.org/10.1002/cm.21139

    Article  CAS  PubMed  Google Scholar 

  88. Chacko JV, Canale C, Harke B, Diaspro A (2013) PLoS One 8(6):1. https://doi.org/10.1371/journal.pone.0066608

    Article  CAS  Google Scholar 

  89. Odermatt PD, Shivanandan A, Deschout H, Jankele R, Nievergelt AP, Feletti L, Davidson MW, Radenovic A, Fantner GE (2015) Nano Lett 15(8):4896. https://doi.org/10.1021/acs.nanolett.5b00572

    Article  CAS  PubMed  Google Scholar 

  90. Curry N, Ghézali G, Kaminski Schierle GS, Rouach N, Kaminski CF (2017) Front Cell Neurosci 11:104. https://doi.org/10.3389/fncel.2017.00104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hirvonen LM, Cox S (2018) Meth Appl Fluoresc 6(4):045002. https://doi.org/10.1088/2050-6120/aad018

    Article  CAS  Google Scholar 

  92. Hirvonen LM, Marsh RJ, Jones GE, Cox S (2020) Eur J Cell Biol 99(7):151106. https://doi.org/10.1016/j.ejcb.2020.151106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cosentino M, Canale C, Bianchini P, Diaspro A (2019) Sci Adv 5(6):eaav8060. https://doi.org/10.1126/sciadv.aav8062

    Article  CAS  Google Scholar 

  94. Begemann I, Galic M (2016) Front Synap Neurosci 8. https://doi.org/10.3389/fnsyn.2016.00028

  95. Huang B, Jones SA, Brandenburg B, Zhuang X (2008) Nat Methods 5(12):1047. https://doi.org/10.1038/nmeth.1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Huang B, Wang W, Bates M, Zhuang X (2008) Science 319(5864):810. https://doi.org/10.1126/science.1153529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shevchuk AI, Hobson P, Lab MJ, Klenerman D, Krauzewicz N, Korchev YE (2008) Biophys J 94(10):4089. https://doi.org/10.1529/biophysj.107.112524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Volkswagen Foundation (grant 88 390) and the German Research Foundation (grant 411517989).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Happel, P., Haak, A., Gesper, A. (2022). Correlating Scanning Ion Conductance and Super-Resolved Fluorescence Microscopy. In: Schäffer, T.E. (eds) Scanning Ion Conductance Microscopy. Bioanalytical Reviews, vol 3. Springer, Cham. https://doi.org/10.1007/11663_2022_13

Download citation

Publish with us

Policies and ethics

Navigation