Topological Quantum Field Theories and Operator Algebras

  • Chapter
  • First Online:
Quantum Field Theory and Noncommutative Geometry

Part of the book series: Lecture Notes in Physics ((LNP,volume 662))

Abstract

We have seen much fruitful interactions between 3-dimensional topology and operator algebras since the stunning discovery of the Jones polynomial for links [19] arising from his theory of subfactors [18] in theory of operator algebras. In this paper, we review the current status of theory of “quantum” topological invariants of 3-manifolds arising from operator algebras. The original discovery of topological invariants arising from operator algebras was for knots and links, as above, rather than 3-manifolds, but here we concentrate on invariants for 3-manifolds. On the way of studying such topological invariants, we naturally go through topological invariants of knots and links. From operator algebraic data, we construct not only topological invariants of 3-manifolds, but also topological quantum field theories of dimension 3, in the sense of Atiyah [2], as the title of this paper shows, but for simplicity of expositions, we consider mainly complex number-valued topological invariants of oriented compact manifolds of dimension 3 without boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Asaeda, U. Haagerup: Commun. Math. Phys. 202, 1–63 (1999).

    Article  Google Scholar 

  2. M.F. Atiyah: Publ. Math. I.H.E.S. 68, 175–186 (1989).

    Google Scholar 

  3. J. Böckenhauer D.E. Evans (1998) Commun. Math. Phys. 197 361–386 Occurrence Handle10.1007/s002200050455

    Article  Google Scholar 

  4. J. Böckenhauer D.E. Evans (1999) Commun. Math. Phys. II 200 57–103 Occurrence Handle10.1007/s002200050523

    Article  Google Scholar 

  5. J. Böckenhauer, D.E. Evans: Commun. Math. Phys. 197, 361–386 (1998) II 200, 57–103 (1999) III 205, 183–228 (1999).

    Article  Google Scholar 

  6. J. Böckenhauer, D.E. Evans, Y. Kawahigashi: Commun. Math. Phys. 208, 429–487 (1999).

    Article  Google Scholar 

  7. J. Böckenhauer, D.E. Evans, Y. Kawahigashi: Commun. Math. Phys. 210, 733–784 (2000).

    Article  Google Scholar 

  8. J. Böckenhauer, D.E. Evans, Y. Kawahigashi: Publ. RIMS, Kyoto Univ. 37, 1–35 (2001).

    Google Scholar 

  9. A. Cappelli, C. Itzykson, J.-B. Zuber: Commun. Math. Phys. 113, 1–26 (1987)

    Article  Google Scholar 

  10. S. Doplicher, R. Haag, J.E. Roberts: I Commun. Math. Phys. 23, 199–230 (1971) II 35, 49–85 (1974).

    Google Scholar 

  11. S. Doplicher, J.E. Roberts: Ann. Math. 130, 75–119 (1989).

    Google Scholar 

  12. S. Doplicher, J.E. Roberts: Invent. Math. 98, 157–218 (1989).

    Article  Google Scholar 

  13. D.E. Evans, Y. Kawahigashi: Quantum symmetries on operator algebras, (Oxford University Press, Oxford, 1998).

    Google Scholar 

  14. K. Fredenhagen K.-H. Rehren B. Schroer (1989) I. Commun. Math. Phys. 125 201–226 Occurrence Handle10.1007/BF01217906

    Article  Google Scholar 

  15. K. Fredenhagen, K.-H. Rehren, B. Schroer: I. Commun. Math. Phys. 125, 201–226 (1989) II. Rev. Math. Phys. Special issue, 113–157 (1992).

    Article  Google Scholar 

  16. D. Guido, R. Longo: Commun. Math. Phys. 181, 11–35 (1996).

    Google Scholar 

  17. R. Haag: Local Quantum Physics, (Springer-Verlag, Berlin-Heidelberg-New York, 1996).

    Google Scholar 

  18. U. Haagerup: Principal graphs of subfactors in the index range 4 < 3+√2. In: Subfactors, ed by H. Araki et al. (World Scientific, 1994) pp 1–38.

    Google Scholar 

  19. M. Izumi: Commun. Math. Phys. 213, 127–179 (2000).

    Article  Google Scholar 

  20. M. Izumi: Rev. Math. Phys. 13, 603–674 (2001).

    Article  Google Scholar 

  21. V.F.R. Jones: Invent. Math. 72, 1–25 (1983).

    Article  Google Scholar 

  22. V.F.R. Jones: Bull. Amer. Math. Soc. 12, 103–112 (1985).

    Google Scholar 

  23. Y. Kawahigashi, R. Longo: math-ph/0201015, to appear in Ann. Math.

    Google Scholar 

  24. Y. Kawahigashi, R. Longo: math-ph/0304022, to appear in Commun. Math. Phys.

    Google Scholar 

  25. Y. Kawahigashi, R. Longo, M. Müger: Commun. Math. Phys. 219, 631–669 (2001).

    Google Scholar 

  26. Y. Kawahigashi, N. Sato, M. Wakui: math.OA/0208238.

    Google Scholar 

  27. R. Longo (1989) I Commun. Math. Phys. 126 217–247

    Google Scholar 

  28. R. Longo: I Commun. Math. Phys. 126, 217–247 (1989) II Commun. Math. Phys. 130, 285–309 (1990).

    Google Scholar 

  29. R. Longo, K.-H. Rehren: Rev. Math. Phys. 7, 567–597 (1995).

    Article  Google Scholar 

  30. M. Müger: math.CT/0111205.

    Google Scholar 

  31. A. Ocneanu: Quantized group, string algebras and Galois theory for algebras. In Operator algebras and applications, Vol. 2, ed D. E. Evans and M. Takesaki, (Cambridge University Press, Cambridge, 1988) pp 119–172.

    Google Scholar 

  32. A. Ocneanu: Chirality for operator algebras. In: Subfactors, ed by H. Araki et al. (World Scientific, 1994) pp 39–63.

    Google Scholar 

  33. A. Ocneanu: Operator algebras, topology and subgroups of quantum symmetry – construction of subgroups of quantum groups – (written by S. Goto and N. Sato). In: Taniguchi Conference in Mathematics Nara ‘98 Adv. Stud. Pure Math. 31, (Math. Soc. Japan, 2000) pp 235–263.

    Google Scholar 

  34. S. Popa: Correspondences, preprint 1986.

    Google Scholar 

  35. S. Popa: Math. Res. Lett. 1, 409–425 (1994).

    Google Scholar 

  36. K.-H. Rehren: Braid group statistics and their superselection rules. In: The algebraic theory of superselection sectors, Palermo, 1989, World Scientific Publishing (1990) pp 333–355.

    Google Scholar 

  37. N. Reshetikhin, V.G. Turaev: Invent. Math. 103, 547–597 (1991).

    Article  Google Scholar 

  38. N. Sato and M. Wakui: math.OA/0208242, to appear in J. Knot Theory Ramif.

    Google Scholar 

  39. V. G. Turaev, Quantum Invariants of Knots and 3-manifolds, (Walter de Gruyter, 1994).

    Google Scholar 

  40. V.G. Turaev, O. Ya Viro: Topology 31, 865–902 (1992).

    Article  Google Scholar 

  41. V.G. Turaev, H. Wenzl; Internat. J. Math. 4, 323–358 (1993).

    Article  Google Scholar 

  42. V.G. Turaev, H. Wenzl: Math. Ann. 309, 411–461 (1997).

    Article  Google Scholar 

  43. H. Wenzl: Invent. Math. 114, 235–275 (1993).

    Article  Google Scholar 

  44. H. Wenzl: J. Amer. Math. Soc. 11, 261–282 (1998).

    Article  Google Scholar 

  45. F. Xu: Commun. Math. Phys. 192, 347–403 (1998).

    Article  Google Scholar 

  46. F. Xu: Commun. Contemp. Math. 2, 307–347 (2000).

    Google Scholar 

  47. F. Xu: Commun. Math. Phys. 211, 1–44 (2000).

    Article  Google Scholar 

  48. F. Xu: math.GT/9907077.

    Google Scholar 

  49. F. Xu: Proc. Nat. Acad. Sci. U.S.A. 97, 14069–14073 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ursula Carow-Watamura Yoshiaki Maeda Satoshi Watamura

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Kawahigashi, Y. Topological Quantum Field Theories and Operator Algebras. In: Carow-Watamura, U., Maeda, Y., Watamura, S. (eds) Quantum Field Theory and Noncommutative Geometry. Lecture Notes in Physics, vol 662. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11342786_13

Download citation

Publish with us

Policies and ethics

Navigation