Disposable Bioreactors Used in Process Development and Production Processes with Plant Cell and Tissue Cultures

  • Chapter
  • First Online:
Plants as Factories for Bioproduction

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 188))

  • 20 Accesses

Abstract

The bioreactor is the centerpiece of the upstream processing in any biotechnological production process. Its design, the cultivation parameters, the production cell line, and the culture medium all have a major influence on the efficiency of the process and the result of the cultivation. Disposable bioreactors have been used for the past 20 years, playing a major role in process development and commercial production of high-value substances at medium scales.

Our review deals with scalable, disposable bioreactors that have proven to be useful for the cultivation of plant cell and tissue cultures. Based on the definitions of terms and a categorization approach, the most commonly used, commercially available, disposable bioreactor types are presented below. The focus is on wave-mixed, stirred, and orbitally shaken bioreactors. In addition to their instrumentation and bioengineering characteristics, cultivation results are discussed, and emerging trends for the development of disposable bioreactors for plant cell and tissue cultures are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barbaroux M, Sette A (2006) Biopharm Int 2006(6). https://www.biopharminternational.com/view/properties-materials-used-single-use-flexible-containers-requirements-and-analysis

  2. Maschke RW, Seidel S, Bley T, Eibl R, Eibl D (2022) Biochem Eng J 177:108224. https://doi.org/10.1016/j.bej.2021.108224

    Article  CAS  Google Scholar 

  3. Vanhamel S, Piton C (2019) Single-use technology in biopharmaceutical manufacture (Wiley, 2019), chap. 8, pp 95–116. https://doi.org/10.1002/9781119477891.ch8

  4. da Silva Aquino KA (2012) Gamma radiation (InTech, 2012). https://doi.org/10.5772/34901

  5. Lieberman J, Keskula M, Adduci J, Vargas V, Iamura M, Pillai S, Elster J, Murphy M (2020) Arab J Nucl Sci Appl 0(0):1. https://doi.org/10.21608/ajnsa.2020.116231

  6. BioPhorum (2021) Introduction to x-ray and gamma sterilization methods. White paper, BioPhorum. https://doi.org/10.46220/2021SP002. https://www.biophorum.com/download/introduction-to-x-ray-and-gamma-sterilization-methods/

  7. IIA (2017) A comparison of gamma, e-beam, x-ray and ethylene oxide technologies for the industrial sterilization of medical devices and healthcare products. Tech. rep., International Irradiation Association. https://iiaglobal.com/resource/whitepaper-comparison-gamma-e-beam-x-ray-ethylene-oxide-technologies-industrial-sterilization-medical-devices-healthcare-products/

  8. Menzel R, Pahl I, Dorey S, Maier T, Hauk A (2023) Int J Pharm 634:122677. https://doi.org/10.1016/j.ijpharm.2023.122677

    Article  CAS  PubMed  Google Scholar 

  9. Dorey S, Hathcock J, Bollensen M, Cardona M, Feng CD, Hendrick R, Hunter N, Luo L, Neuman T, Troise N, Trolio A, Wilson G (2023) X-ray sterilization of single-use bioprocess equipment part II - reprensentative qualification data. 1400 Crystal Drive, Arlington VA, USA

    Google Scholar 

  10. Shukla AA, Gottschalk U (2013) Trends Biotechnol 31(3):147. https://doi.org/10.1016/j.tibtech.2012.10.004. Special Issue: Celebrating 30 years of biotechnology

  11. Lopes AG (2015) Food Bioprod Process 93:98. https://doi.org/10.1016/j.fbp.2013.12.002

    Article  Google Scholar 

  12. Mauter M (2009) Bioprocess Int 7:18. https://bioprocessintl.com/2014/single-use-and-sustainability-351059/?pageNum=1

    CAS  Google Scholar 

  13. Pietrzykowski M, Flanagan W, Pizzi V, Brown A, Sinclair A, Monge M (2013) J Clean Product 41:150. https://doi.org/10.1016/j.jclepro.2012.09.048

    Article  CAS  Google Scholar 

  14. Flanagan W, Brown A, Pietrzykowski M, Pizzi V, Monge M, Sinclair A (2011) BioPharm Int 8. https://www.biopharminternational.com/view/environmental-life-cycle-assessment-comparing-single-use-and-conventional-process-technology

  15. Whitford WG, Petrich MA, Flanagan WP (2019) In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture, chap. 13. Wiley, pp 169–179. https://doi.org/10.1002/9781119477891.ch13

  16. Ottinger M, Wenk I, Pereira JC, John G, Junne S (2022) Chemie Ingenieur Technik 94(12):1883. https://doi.org/10.1002/cite.202200105

    Article  CAS  Google Scholar 

  17. Langer ES, Gillespie DE, Rader R (eds) (2020) In: 17th Annual Report and Survey on Biopharmaceutical Manufacturing Capacity and Production, 17th edn. BioPlan Associates, Rockville, MD

    Google Scholar 

  18. Sobańtka A, Weiner C, (2019) Single-use technology in biopharmaceutical manufacture, chap 11. Wiley, pp 143–158. https://doi.org/10.1002/9781119477891.ch11

  19. Ta C, Bones J (2017) J Chromatogr A 1492:49. https://doi.org/10.1016/j.chroma.2017.02.062

    Article  CAS  PubMed  Google Scholar 

  20. Hammond M, Marghitoiu L, Lee H, Perez L, Rogers G, Nashed-Samuel Y, Nunn H, Kline S (2014) Biotechnol Progress 30(2):332. https://doi.org/10.1002/btpr.1869

    Article  CAS  Google Scholar 

  21. Jurkiewicz E, Husemann U, Greller G, Barbaroux M, Fenge C (2014) Biotechnol Progress 30(5):1171. https://doi.org/10.1002/btpr.1934

    Article  CAS  Google Scholar 

  22. Imseng N, Schillberg S, Schürch C, Schmid D, Schütte K, Gorr G, Eibl D, Eibl R (2014) Suspension culture of plant cells under heterotrophic conditions, chap. 7. Wiley, pp 224–258. https://doi.org/10.1002/9783527683321.ch07

  23. Lehmann N, Dittler I, Lämsä M, Ritala A, Rischer H, Eibl D, Oksman-Caldentey KM, Eibl R (2014) Production of biomass and bioactive compounds using bioreactor technology. Springer Netherlands, pp 17–46. https://doi.org/10.1007/978-94-017-9223-3XXSlahUndXX2

  24. Oosterhuis NMG (2017) Single-use bioreactors for continuous bioprocessing: challenges and outlook, chap. 5. Wiley, pp 131–148. https://doi.org/10.1002/9783527699902.ch5

  25. Jossen V, Eibl R, Eibl D (2019) Single-use bioreactors – an overview, chap. 4. Wiley, pp 37–52. https://doi.org/10.1002/9781119477891.ch4

  26. Jossen V, Eibl R, Broccard G, Eibl D (2023) Biopharmaceutical manufacturing: progress, trends and challanges. Cell engineering, vol 11. Springer Nature

    Google Scholar 

  27. Schirmer C, Maschke RW, Pörtner R, Eibl D (2021) Appl Microbiol Biotechnol 105(6):2225. https://doi.org/10.1007/s00253-021-11180-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Smith MT, Larsen LM, Mullen KM, Johnson J (2020) Bioproces Online 18(10):1. https://www.bioprocessonline.com/doc/updating-the-economics-of-biologics-manufacturing-with-l-single-use-bioreactors-a-paradigm-shift-0001

    Google Scholar 

  29. Ziv M, Ronen G, Raviv M (1998) In Vitro Cell Dev Biol Plant 34(2):152. https://doi.org/10.1007/BF02822781

    Article  Google Scholar 

  30. Ziv M (1999a) Plant biotechnology and in vitro biology in the 21st century, vol 36. Springer Netherlands, pp 673–676. https://doi.org/10.1007/978-94-011-4661-6XXSlahUndXX152

  31. Ziv M (1999b) In: Janick J (ed) Horticultural reviews, chap. 1. Wiley, pp 1–30. https://doi.org/10.1002/9780470650776.ch1

  32. Ziv M (2005) Plant Cell Tissue Organ Culture 81(3):277. https://doi.org/10.1007/s11240-004-6649-y

    Article  Google Scholar 

  33. Hsiao TY, Bacani FT, Carvalho EB, Curtis WR (1999) Biotechnol Progress 15(1):114. https://doi.org/10.1021/bp980103+

    Article  CAS  Google Scholar 

  34. Curtis WR (2004) Growing cells in a reservoir formed of a flexible sterile plastic liner (2004)

    Google Scholar 

  35. Ducos JP, Terrier B, Courtois D, Pétiard V (2008) Phytochem Rev 7(3):607. https://doi.org/10.1007/s11101-008-9089-1

    Article  CAS  Google Scholar 

  36. Ducos JP, Terrier B, Courtois D (2010) In: Eibl R, Eibl D (eds) Disposable bioreactors. Springer, Berlin, Heidelberg, pp 89–115. https://doi.org/10.1007/10_2008_28

    Google Scholar 

  37. Terrier B, Courtois D, Hénault N, Cuvier A, Bastin M, Aknin A, Dubreuil J, Pétiard V (2007) Biotechnol Bioeng 96(5):914. https://doi.org/10.1002/bit.21187

    Article  CAS  PubMed  Google Scholar 

  38. Fei L, Weathers PJ (2014) Plant Cell Tissue Organ Culture (PCTOC) 116(1):37. https://doi.org/10.1007/s11240-013-0380-5

    Article  CAS  Google Scholar 

  39. Eibl R, Brändli J, Eibl D (2012). In: Doelle HW, Rokem S, Berovic M (eds) Encyclopedia of life support systems (EOLSS), Developed under the auspices of the UNESCO. EOLSS Publishers, Oxford, pp 33–51

    Google Scholar 

  40. Shaaltiel Y, Kirshner Y, Shtainiz A, Naos Y, Shneor Y (2010) Large scale disposable bioreactor. Patent EP2150608B1

    Google Scholar 

  41. Tekoah Y, Shulman A, Kizhner T, Ruderfer I, Fux L, Nataf Y, Bartfeld D, Ariel T, Gingis-Velitski S, Hanania U, Shaaltiel Y (2015) Plant Biotechnol J 13(8):1199. https://doi.org/10.1111/pbi.12428

    Article  CAS  PubMed  Google Scholar 

  42. Gazaille B, Rios M, Almon EB, Rubin E (2020) Bioprocess Int 18(9):14. https://bioprocessintl.com/analytical/cell-line-development/plant-cell-cultures-and-cell-lines-for-recombinant-protein-expression/

    Google Scholar 

  43. Manufacturing Safe and Sustainable Plant Biomolecules using CellMakers (2023) https://cellexus.com/blog/manufacturing-sustainable-plant-biomolecules-using-cellmaker/. Accessed: 25 May 2023

  44. McAlister B, Finnie J, Watt MP, Blakeway F (2005) Plant Cell Tissue Organ Culture 81(3):347. https://doi.org/10.1007/s11240-004-6658-x

    Article  Google Scholar 

  45. Etienne H, Bertrand B, Georget F, Lartaud M, Montes F, Dechamp E, Verdeil JL, Barry-Etienne D (2013) Tree Physiol 33(6):640. https://doi.org/10.1093/treephys/tpt034

    Article  CAS  PubMed  Google Scholar 

  46. Vidal N, Sánchez C (2019) Eng Life Sci 19(12):896. https://doi.org/10.1002/elsc.201900041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gago D, Sánchez C, Aldrey A, Christie CB, Bernal MÁ, Vidal N (2022) Horticulturae 8(4):286. https://doi.org/10.3390/horticulturae8040286

    Article  Google Scholar 

  48. Georgiev V, Schumann A, Pavlov A, Bley T (2014) Eng Life Sci 14(6):607. https://doi.org/10.1002/elsc.201300166

    Article  CAS  Google Scholar 

  49. Carlo AD, Tarraf W, Lambardi M, Benelli C (2021) Agronomy 11(12):2414. https://doi.org/10.3390/agronomy11122414

    Article  Google Scholar 

  50. Seidel S, Maschke RW, Kraume M, Eibl R, Eibl D (2022) Front Chem Eng 4. https://doi.org/10.3389/fceng.2022.1021416

  51. Junne S, Solymosi T, Oosterhuis N, Neubauer P (2013) Chemie Ingenieur Technik 85(1–2):57. https://doi.org/10.1002/cite.201200149

    Article  CAS  Google Scholar 

  52. Westbrook A, Scharer J, Moo-Young M, Oosterhuis N, Chou CP (2014) Biochem Eng J 88:154. https://doi.org/10.1016/j.bej.2014.04.011

    Article  CAS  Google Scholar 

  53. Tanaka H (1982) Biotechnol Bioeng 24(2):425. https://doi.org/10.1002/bit.260240213

    Article  CAS  PubMed  Google Scholar 

  54. Rodríguez-Monroy M, Trejo-Espino JL, Jiménez-Aparicio A, de la Luz Morante M, Villarreal ML, Trejo-Tapia G (2004) Food Technol Biotechnol 42(3):153

    Google Scholar 

  55. Werner S, Greulich J, Geipel K, Steingroewer J, Bley T, Eibl D (2014) Eng Life Sci 14(6):676. https://doi.org/10.1002/elsc.201400024

    Article  CAS  Google Scholar 

  56. Huang TK, McDonald KA (2012) Biotechnol Adv 30(2):398. https://doi.org/10.1016/j.biotechadv.2011.07.016

    Article  CAS  PubMed  Google Scholar 

  57. Doran PM (2010) In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley. https://doi.org/10.1002/9780470054581.eib150

  58. Fehér A (2019) Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.00536

  59. Wawrosch C, Zotchev SB (2021) Appl Microbiol Biotechnol 105(18):6649. https://doi.org/10.1007/s00253-021-11539-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee EK, ** YW, Park JH, Yoo YM, Hong SM, Amir R, Yan Z, Kwon E, Elfick A, Tomlinson S, Halbritter F, Waibel T, Yun BW, Loake GJ (2010) Nature Biotechnol 28(11):1213. https://doi.org/10.1038/nbt.1693

    Article  CAS  Google Scholar 

  61. Partap M, Warghat AR, Kumar S (2022) Crit Rev Biotechnol 1–19. https://doi.org/10.1080/07388551.2022.2055995

  62. Roy A (2021) Current Pharm Biotechnol 22(1):136. https://doi.org/10.2174/1389201021666201229110625

    Article  CAS  Google Scholar 

  63. Gutierrez-Valdes N, Häkkinen ST, Lemasson C, Guillet M, Oksman-Caldentey KM, Ritala A, Cardon F (2020) Front Plant Sci 11(33). https://doi.org/10.3389/fpls.2020.00033

  64. Kümmritz S, Haas C, Winkler K, Georgiev V, Pavlov A (2017) In: Georgiev V, Pavlov A (eds) Salvia biotechnology. Springer International Publishing, pp 271–289. https://doi.org/10.1007/978-3-319-73900-7_8

  65. Häkkinen ST, Oksman-Caldentey KM (2018) In: Srivastava V, Mehrotra S, Mishra S (eds) Hairy roots. Springer Singapore, pp 3–19. https://doi.org/10.1007/978-981-13-2562-5_1

  66. Neumann KH, Kumar A, Imani J (2020) Plant cell and tissue culture – a tool in biotechnology, 2nd edn. Springer International Publishing. https://doi.org/10.1007/978-3-030-49098-0

  67. Kieran PM, MacLoughlin PF, Malone DM (1997) J Biotechnol 59(1–2):39. https://doi.org/10.1016/s0168-1656(97)00163-6

    Article  CAS  PubMed  Google Scholar 

  68. Mehring A, Haffelder J, Chodorski J, Stiefelmaier J, Strieth D, Ulber R (2020) Plant Cell Tissue Organ Culture (PCTOC) 143(3):573. https://doi.org/10.1007/s11240-020-01942-y

    Article  CAS  Google Scholar 

  69. Kolewe ME, Henson MA, Roberts SC (2010) Plant Cell Rep 29(5):485. https://doi.org/10.1007/s00299-010-0837-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kolewe ME, Henson MA, Roberts SC (2011) Biotechnol Progress 27(5):1365. https://doi.org/10.1002/btpr.655

    Article  CAS  Google Scholar 

  71. Curtis WR, Emery AH (1993) Biotechnol Bioeng 42(4):520. https://doi.org/10.1002/bit.260420416

    Article  CAS  PubMed  Google Scholar 

  72. Tassoni A, Durante L, Ferri M (2012) J Plant Physiol 169(8):775. https://doi.org/10.1016/j.jplph.2012.01.017

    Article  CAS  PubMed  Google Scholar 

  73. Werner S, Maschke RW, Eibl D, Eibl R (2018) In: Atanas Pavlov TB (ed) Reference series in phytochemistry. Springer International Publishing, pp 413–432. https://doi.org/10.1007/978-3-319-54600-1_6

  74. Batista DS, Felipe SHS, Silva TD, de Castro KM, Mamedes-Rodrigues TC, Miranda NA, Ríos-Ríos AM, Faria DV, Fortini EA, Chagas K, Torres-Silva G, Xavier A, Arencibia AD, Otoni WC (2018) In Vitro Cell Dev Biol Plant 54(3):195. https://doi.org/10.1007/s11627-018-9902-5

    Article  CAS  Google Scholar 

  75. Seidel S, Maschke RW, Werner S, Jossen V, Eibl D (2020) Chemie Ingenieur Technik 93(1–2):42. https://doi.org/10.1002/cite.202000179

    Google Scholar 

  76. Nienow AW (2021) Chemie Ingenieur Technik 93(1–2):17. https://doi.org/10.1002/cite.202000176

    Article  CAS  Google Scholar 

  77. Winkler K, Socher ML (2014) In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, pp 1–16. https://doi.org/10.1002/9780470054581.eib651

  78. Gallego A, Imseng N, Bonfill M, Cusido RM, Palazon J, Eibl R, Moyano E (2015) J Biotechnol 195:93. https://doi.org/10.1016/j.jbiotec.2014.12.023

    Article  CAS  PubMed  Google Scholar 

  79. Raven N, Schillberg S, Kirchhoff J, Brändli J, Imseng N, Eibl R (2011) Single-use technology in biopharmaceutical manufacture. Wiley, pp 251–261. https://doi.org/10.1002/9780470909997.ch21

  80. Vasilev N, Gröm** U, Lipperts A, Raven N, Fischer R, Schillberg S (2013) Plant Biotechnol J 11(7):867. https://doi.org/10.1111/pbi.12079

    Article  CAS  PubMed  Google Scholar 

  81. Hoffmann K, Schilling JV, Wandrey G, Welters T, Mahr S, Conrath U, Büchs J (2023) BMC Plant Biol 23(1). https://doi.org/10.1186/s12870-023-04043-y

  82. Georgiev MI, Weber J, Maciuk A (2009) Appl Microbiol Biotechnol 83(5):809. https://doi.org/10.1007/s00253-009-2049-x

    Article  CAS  PubMed  Google Scholar 

  83. Melcher RLJ, Moerschbacher BM (2016) Plant Methods 12(1). https://doi.org/10.1186/s13007-016-0110-1

  84. Busto VD, Calabró-López A, Rodríguez-Talou J, Giulietti AM, Merchuk JC (2013) Biochem Eng J 77:119. https://doi.org/10.1016/j.bej.2013.05.013

    Article  CAS  Google Scholar 

  85. Carreño-Campos C, Arevalo-Villalobos JI, Villarreal ML, Ortiz-Caltempa A, Rosales-Mendoza S (2021) Planta Medica 88(12):1060. https://doi.org/10.1055/a-1677-4135

    PubMed  Google Scholar 

  86. Khojasteh A, Metón I, Camino S, Cusido RM, Eibl R, Palazon J (2019) Int J Mol Sci 20(10):2400. https://doi.org/10.3390/ijms20102400

    Article  PubMed  PubMed Central  Google Scholar 

  87. Raven N, Rasche S, Kuehn C, Anderlei T, Klöckner W, Schuster F, Henquet M, Bosch D, Büchs J, Fischer R, Schillberg S (2014) Biotechnol Bioeng 112(2):308. https://doi.org/10.1002/bit.25352

    Article  PubMed  Google Scholar 

  88. Keil T, Dittrich B, Lattermann C, Habicher T, Büchs J (2019) J Biol Eng 13(1). https://doi.org/10.1186/s13036-019-0147-6

  89. Maschke RW, John GT, Eibl D (2022) Chemie Ingenieur Technik 94(12):1995. https://doi.org/10.1002/cite.202200094

    Article  CAS  Google Scholar 

  90. Jeude M, Dittrich B, Niederschulte H, Anderlei T, Knocke C, Klee D, Büchs J (2006) Biotechnol Bioeng 95(3):433. https://doi.org/10.1002/bit.21012

    Article  CAS  PubMed  Google Scholar 

  91. Beuel AK, Jablonka N, Heesel J, Severin K, Spiegel H, Rasche S (2021) Scientif Rep 11(1). https://doi.org/10.1038/s41598-021-02762-6

  92. Werner S, Olownia J, Egger D, Eibl D (2013) Chemie Ingenieur Technik 85(1–2):118. https://doi.org/10.1002/cite.201200153

    Article  CAS  Google Scholar 

  93. Eibl R, Meier P, Stutz I, Schildberger D, Hühn T, Eibl D (2018) Appl Microbiol Biotechnol 102(20):8661. https://doi.org/10.1007/s00253-018-9279-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schirmer C, Eibl R, Maschke RW, Mozaffari F, Junne S, Daumke R, Ottinger M, Göhmann R, Ott C, Wenk I, Kubischik J, Eibl D (2022) Chemie Ingenieur Technik 94(12):2018. https://doi.org/10.1002/cite.202200092

    Article  CAS  Google Scholar 

  95. Gubser G, Vollenweider S, Eibl D, Eibl R (2021) Eng Life Sci 21(3–4):87. https://doi.org/10.1002/elsc.202000077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Reski R, Parsons J, Decker EL (2015) Plant Biotechnol J 13(8):1191. https://doi.org/10.1111/pbi.12401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Niederkrüger H, Busch A, Dabrowska-Schlepp P, Krieghoff N, Schaaf A, Frischmuth T (2019) In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture, 2nd edn. Wiley, pp 311–318. https://doi.org/10.1002/9781119477891.ch28

  98. Chang SH, Ho CK, Chen FH (2016) Medicinal plants - recent advances in research and development. Springer Singapore, pp 257–272. https://doi.org/10.1007/978-981-10-1085-9_10

  99. Palazón J, Mallol A, Eibl R, Lettenbauer C, Cusidó RM, Piñol MT (2003) Planta Medica 69(4):344. https://doi.org/10.1055/s-2003-38873

    Article  PubMed  Google Scholar 

  100. Valdiani A, Hansen OK, Johannsen VK, Nielsen UB (2019) Int J Environ Sci Technol 17(3):1425. https://doi.org/10.1007/s13762-019-02556-4

    Article  Google Scholar 

  101. Nielsen UB, Hansen CB, Hansen U, Johansen VK, Egertsdotter U (2022) Front Plant Sci 13. https://doi.org/10.3389/fpls.2022.989484

  102. Bentebibel S, Moyano E, Palazón J, Cusidó RM, Bonfill M, Eibl R, Piñol MT (2005) Biotechnol Bioeng 89(6):647. https://doi.org/10.1002/bit.20321

    Article  CAS  PubMed  Google Scholar 

  103. Eibl R, Eibl D (2008) In: Gupta SD, Ibaraki Y (eds) Plan tissue culture engineering, vol 6. Springer Netherlands, pp 203–227. https://doi.org/10.1007/978-1-4020-3694-1_12

  104. Khojasteh A, Mirjalili MH, Palazon J, Eibl R, Cusido RM (2016) Eng Life Sci 16(8):740. https://doi.org/10.1002/elsc.201600064

    Article  CAS  Google Scholar 

  105. Ritala A, Wahlström EH, Holkeri H, Hafren A, Mäkeläinen K, Baez J, Mäkinen K, Nuutila AM (2008) Protein Express Purif 59(2):274. https://doi.org/10.1016/j.pep.2008.02.013

    Article  CAS  Google Scholar 

  106. Perepelitsa N, Kaiser SC, Eibl D, Imseng N (2020) Mass propagation of Nicotiana tabacum cv. BY-2 suspension cells in the HyPerforma Rocker Bioreactor. techreport COL012611, Thermo Scientific. https://assets.thermofisher.com/TFS-Assets/BPD/Application-Notes/by-2-suspension-cells-rocker-bioreactor-app-note.pdf

  107. Vontobel C, Ott A, Werner S, Eibl D (2016) Cultivation of antibody producing fast-growing suspension tobacco plant cells in ReadyToProcess WAVE 25 bioreactor system. techreport CY13727, Cytiva. https://cdn.cytivalifesciences.com/api/public/content/digi-18121-original

  108. Schürch C, Blum P, Zülli F (2007) Phytochem Rev 7(3):599. https://doi.org/10.1007/s11101-007-9082-0

    Article  Google Scholar 

  109. Jolicoeur M, Chavarie C, Carreau PJ, Archambault J (1992) Biotechnol Bioeng 39(5):511. https://doi.org/10.1002/bit.260390506

    Article  CAS  PubMed  Google Scholar 

  110. Eibl R, Werner S, Eibl D (2009) Eng Life Sci 9(3):156. https://doi.org/10.1002/elsc.200800102

    Article  CAS  Google Scholar 

  111. Krasteva G, Georgiev V, Pavlov A (2020) Eng Life Sci 21(3–4):68. https://doi.org/10.1002/elsc.202000078

    PubMed  PubMed Central  Google Scholar 

  112. Hasnain A, Naqvi SAH, Ayesha SI, Khalid F, Ellahi M, Iqbal S, Hassan MZ, Abbas A, Adamski R, Markowska D, Baazeem A, Mustafa G, Moustafa M, Hasan ME, Abdelhamid MMA (2022) Front Plant Sci 13. https://doi.org/10.3389/fpls.2022.1009395

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Seidel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maschke, R.W., Seidel, S., Rossi, L., Eibl, D., Eibl, R. (2024). Disposable Bioreactors Used in Process Development and Production Processes with Plant Cell and Tissue Cultures. In: Steingroewer, J. (eds) Plants as Factories for Bioproduction. Advances in Biochemical Engineering/Biotechnology, vol 188. Springer, Cham. https://doi.org/10.1007/10_2024_249

Download citation

Publish with us

Policies and ethics

Navigation