Cell-Free Protein Synthesis of Metalloproteins

  • Chapter
  • First Online:
Cell-free Macromolecular Synthesis

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 185))

Abstract

Metalloproteins, proteins containing metal atoms or clusters within their structures, are critical for various biological functions across all domains of life. More than hundreds of different types have been discovered, which conduct various roles such as transportation of O2, catalyzing chemical reactions, sensing environmental changes, and relaying electrons. Metalloprotein molecules incorporate a variety of metal atoms, coordinated to specific amino acid residues that affect their conformation and functionality. The process of metal incorporation typically occurs during or post-protein folding, often requiring chaperones for metal ion delivery and quality control. Progress in understanding metal incorporation and metalloprotein functionality has been enhanced by cell-free protein synthesis (CFPS) methods that offer direct control over the synthesis environment. This chapter reviews the diverse applications of CFPS methods in metalloprotein research, encompassing structure–function studies, protein engineering, and creation of artificial metalloproteins. Examples demonstrating the utility and advances brought about by CFPS in synthetic biology, electrochemistry, and drug discovery are highlighted. Despite remarkable progress, challenges remain in optimizing and advancing the CFPS methods, underscoring the need for future explorations in this transformative approach to metalloprotein study and engineering.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 234.33
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 299.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mairbäurl H, Weber RE (2011) Oxygen transport by hemoglobin. Compr Physiol 2(2):1463–1489

    Google Scholar 

  2. Wittenberg BA, Wittenberg JB (1989) Transport of oxygen in muscle. Annu Rev Physiol 51(1):857–878

    Article  CAS  PubMed  Google Scholar 

  3. Lindskog S (1997) Structure and mechanism of carbonic anhydrase. Pharmacol Ther 74(1):1–20

    Article  CAS  PubMed  Google Scholar 

  4. Tainer JA, Getzoff ED, Richardson JS, Richardson DC (1983) Structure and mechanism of copper, zinc superoxide dismutase. Nature 306(5940):284–287

    Article  CAS  PubMed  Google Scholar 

  5. Yoshikawa S, Shimada A (2015) Reaction mechanism of cytochrome c oxidase. Chem Rev 115(4):1936–1989

    Article  CAS  PubMed  Google Scholar 

  6. Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11(1):39–46

    Article  CAS  PubMed  Google Scholar 

  7. Fox PL, Mukhopadhyay C, Ehrenwald E (1995) Structure, oxidant activity, and cardiovascular mechanisms of human ceruloplasmin. Life Sci 56(21):1749–1758

    Article  CAS  PubMed  Google Scholar 

  8. Senda M, Kishigami S, Kimura S, Fukuda M, Ishida T, Senda T (2007) Molecular mechanism of the redox-dependent interaction between NADH-dependent ferredoxin reductase and Rieske-type [2Fe-2S] ferredoxin. J Mol Biol 373(2):382–400

    Article  CAS  PubMed  Google Scholar 

  9. Colman PM, Freeman HC, Guss JM, Murata M, Norris VA, Ramshaw JA, Venkatappa MP (1978) X-ray crystal structure analysis of plastocyanin at 2.7 Å resolution. Nature 272(5651):319–324

    Article  CAS  Google Scholar 

  10. Crichton RR (1971) Ferritin: structure, synthesis and function. N Engl J Med 284(25):1413–1422

    Article  CAS  PubMed  Google Scholar 

  11. Adman ET, Sieker LC, Jensen LH (1973) The structure of a bacterial ferredoxin. J Biol Chem 248(11):3987–3996

    Article  CAS  PubMed  Google Scholar 

  12. Shima S, Pilak O, Vogt S, Schick M, Stagni MS, Meyer-Klaucke W, Warkentin E, Thauer RK, Ermler U (2008) The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science 321(5888):572–575

    Article  CAS  PubMed  Google Scholar 

  13. Bilder PW, Ding H, Newcomer ME (2003) Crystal structure of the ancient, Fe− S scaffold IscA reveals a novel protein fold. Biochemistry 43(1):133–139

    Article  Google Scholar 

  14. Wuebbens MM, Liu MT, Rajagopalan KV, Schindelin H (2000) Insights into molybdenum cofactor deficiency provided by the crystal structure of the molybdenum cofactor biosynthesis protein MoaC. Structure 8(7):709–718

    Article  CAS  PubMed  Google Scholar 

  15. Palumaa P, Kangur L, Voronova A, Sillard R (2004) Metal-binding mechanism of Cox17, a copper chaperone for cytochrome c oxidase. Biochem J 382(1):307–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Young JC, Moarefi I, Hartl FU (2001) Hsp90: a specialized but essential protein-folding tool. J Cell Biol 154(2):267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuchenreuther JM, Myers WK, Stich TA, George SJ, NejatyJahromy Y, Swartz JR, Britt RD (2013) A radical intermediate in tyrosine scission to the CO and CN− ligands of FeFe hydrogenase. Science 342(6157):472–475

    Article  CAS  PubMed  Google Scholar 

  18. Kuchenreuther JM, Myers WK, Suess DL, Stich TA, Pelmenschikov V, Shiigi SA, Cramer SP, Swartz JR, Britt RD, George SJ (2014) The HydG enzyme generates an Fe (CO) 2 (CN) synthon in assembly of the FeFe hydrogenase H-cluster. Science 343(6169):424–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koo J, Schnabel T, Liong S, Evitt NH, Swartz JR (2017) High-throughput screening of catalytic H2 production. Angew Chem Int Ed 56(4):1012–1016

    Article  CAS  Google Scholar 

  20. Koo J, Swartz JR (2018) System analysis and improved [FeFe] hydrogenase O2 tolerance suggest feasibility for photosynthetic H2 production. Metab Eng 49:21–27

    Article  CAS  PubMed  Google Scholar 

  21. Mounicou S, Lobinski R (2008) Challenges to metallomics and analytical chemistry solutions. Pure Appl Chem 80(12):2565–2575

    Article  CAS  Google Scholar 

  22. Li J, Lawton TJ, Kostecki JS, Nisthal A, Fang J, Mayo SL, Rosenzweig AC, Jewett MC (2016) Cell-free protein synthesis enables high yielding synthesis of an active multicopper oxidase. Biotechnol J 11(2):212–218

    Article  CAS  PubMed  Google Scholar 

  23. Ezure T, Suzuki T, Ando E, Nishimura O, Tsunasawa S (2009) Expression of human cu, Zn-superoxide dismutase in an insect cell-free system and its structural analysis by MALDI-TOF MS. J Biotechnol 144(4):287–292

    Article  CAS  PubMed  Google Scholar 

  24. Boyer ME, Stapleton JA, Kuchenreuther JM, Wang CW, Swartz JR (2008) Cell-free synthesis and maturation of [FeFe] hydrogenases. Biotechnol Bioeng 99(1):59–67

    Article  CAS  PubMed  Google Scholar 

  25. Kuchenreuther JM, Grady-Smith CS, Bingham AS, George SJ, Cramer SP, Swartz JR (2010) High-yield expression of heterologous [FeFe] hydrogenases in Escherichia coli. PLoS One 5(11):e15491

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nguyen TH, Ozawa K, Stanton-Cook M, Barrow R, Huber T, Otting G (2011) Generation of Pseudo contact shifts in protein NMR spectra with a genetically encoded cobalt (II)-binding amino acid. Angew Chem Int Ed 50(3):692–694

    Article  CAS  Google Scholar 

  27. Bocharova OV, Urban AS, Nadezhdin KD, Bocharov EV, Arseniev AS (2013) Bacterial and cell-free production of APP671-726 containing amyloid precursor protein transmembrane and metal-binding domains. Biochemistry 78:1263–1271

    CAS  PubMed  Google Scholar 

  28. Nianios D, Thierbach S, Steimer L, Lulchev P, Klostermeier D, Fetzner S (2015) Nickel quercetinase, a “promiscuous” metalloenzyme: metal incorporation and metal ligand substitution studies. BMC Biochem 16:1–11

    Article  CAS  Google Scholar 

  29. Koo J, Shiigi S, Rohovie M, Mehta K, Swartz JR (2016) Characterization of [FeFe] hydrogenase O2 sensitivity using a new, physiological approach. J Biol Chem 291(41):21563–21570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Payá-Tormo L, Coroian D, Martín-Muñoz S, Badalyan A, Green RT, Veldhuizen M, Jiang X, López-Torrejón G, Balk J, Seefeldt LC, Burén S (2022) A colorimetric method to measure in vitro nitrogenase functionality for engineering nitrogen fixation. Sci Rep 12(1):10367

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ninomiya R, Zhu B, Kojima T, Iwasaki Y, Nakano H (2014) Role of disulfide bond isomerase DsbC, calcium ions, and hemin in cell-free protein synthesis of active manganese peroxidase isolated from Phanerochaete chrysosporium. J Biosci Bioeng 117(5):652–657

    Article  CAS  PubMed  Google Scholar 

  32. Key HM, Dydio P, Clark DS, Hartwig JF (2016) Abiological catalysis by artificial haem proteins containing noble metals in place of iron. Nature 534(7608):534–537

    Article  CAS  PubMed  Google Scholar 

  33. Christoffel F, Igareta NV, Pellizzoni MM, Tiessler-Sala L, Lozhkin B, Spiess DC, Lledos A, Marechal JD, Peterson RL, Ward TR (2021) Design and evolution of chimeric streptavidin for protein-enabled dual gold catalysis. Nature Catalysis 4(8):643–653

    Article  CAS  Google Scholar 

  34. Zubi YS, Seki K, Li Y, Hunt AC, Liu B, Roux B, Jewett MC, Lewis JC (2022) Metal-responsive regulation of enzyme catalysis using genetically encoded chemical switches. Nat Commun 13(1):1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamin Koo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koo, J. (2023). Cell-Free Protein Synthesis of Metalloproteins. In: Lu, Y., Jewett, M.C. (eds) Cell-free Macromolecular Synthesis. Advances in Biochemical Engineering/Biotechnology, vol 185. Springer, Cham. https://doi.org/10.1007/10_2023_233

Download citation

Publish with us

Policies and ethics

Navigation