Hydrogel-Based Multi-enzymatic System for Biosynthesis

  • Chapter
  • First Online:
Cell-free Production

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 186))

Abstract

Biosynthesis involving multi-enzymatic reactions is usually an efficient and economic method to produce plentiful important molecules. To increase the product yield in biosynthesis, the involved enzymes can be immobilized to carriers for enhancing enzyme stability, increasing synthesis efficiency and improving enzyme recyclability. Hydrogels with three-dimensional porous structures and versatile functional groups are promising carriers for enzyme immobilization. Herein, we review the recent advances of the hydrogel-based multi-enzymatic system for biosynthesis. First, we introduce the strategies of enzyme immobilization in hydrogel, including the pros and cons of the strategies. Then we overview the recent applications of the multi-enzymatic system for biosynthesis, including cell-free protein synthesis (CFPS) and non-protein synthesis, especially high value-added molecules. In the last section, we discuss the future perspective of the hydrogel-based multi-enzymatic system for biosynthesis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tibrewal N, Tang Y (2014) Biocatalysts for natural product biosynthesis. Annu Rev Chem Biomol Eng 5:347–366. https://doi.org/10.1146/annurev-chembioeng-060713-040008

    Article  CAS  PubMed  Google Scholar 

  2. O’Neill EC, Kelly S (2017) Engineering biosynthesis of high-value compounds in photosynthetic organisms. Crit Rev Biotechnol 37:779–802. https://doi.org/10.1080/07388551.2016.1237467

    Article  CAS  PubMed  Google Scholar 

  3. Srinivasulu C, Ramgopal M, Ramanjaneyulu G et al (2018) Syringic acid (SA) – a review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomed Pharmacother 108:547–557. https://doi.org/10.1016/J.BIOPHA.2018.09.069

    Article  CAS  PubMed  Google Scholar 

  4. Siddiqi KS, Husen A, Rao RAK (2018) A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol 16:1–28. https://doi.org/10.1186/s12951-018-0334-5

    Article  CAS  Google Scholar 

  5. Li J, Zhang L, Liu W (2018) Cell-free synthetic biology for in vitro biosynthesis of pharmaceutical natural products. Synth Syst Biotechnol 3:83–89. https://doi.org/10.1016/j.synbio.2018.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Walsh CT, Moore BS (2019) Enzymatic cascade reactions in biosynthesis. Angew Chem Int Ed 58:6846–6879. https://doi.org/10.1002/ANIE.201807844

    Article  CAS  Google Scholar 

  7. Ricca E, Brucher B, Schrittwieser JH (2011) Multi-enzymatic cascade reactions: overview and perspectives. Adv Synth Catal 353:2239–2262. https://doi.org/10.1002/ADSC.201100256

    Article  CAS  Google Scholar 

  8. Tang S, Liao D, Li X et al (2021) Cell-free biosynthesis system: methodology and perspective of in vitro efficient platform for pyruvate biosynthesis and transformation. ACS Synth Biol 10:2417–2433. https://doi.org/10.1021/acssynbio.1c00252

    Article  CAS  PubMed  Google Scholar 

  9. Zhuang L, Huang S, Liu WQ et al (2020) Total in vitro biosynthesis of the nonribosomal macrolactone peptide valinomycin. Metab Eng 60:37–44. https://doi.org/10.1016/j.ymben.2020.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mateo C, Palomo JM, Fernandez-Lorente G et al (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzym Microb Technol 40:1451–1463. https://doi.org/10.1016/j.enzmictec.2007.01.018

    Article  CAS  Google Scholar 

  11. Datta S, Christena LR, Rajaram YRS (2013) Enzyme immobilization: an overview on techniques and support materials. Biotech 3:1–9. https://doi.org/10.1007/s13205-012-0071-7

    Article  Google Scholar 

  12. Ardao I, Hwang ET, Zeng AP (2013) In vitro multienzymatic reaction systems for biosynthesis. In: Zeng A-P (ed) Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 153–184

    Google Scholar 

  13. Morgado G, Gerngross D, Roberts TM, Panke S (2018) Synthetic biology for cell-free biosynthesis: fundamentals of designing novel in vitro multi-enzyme reaction networks. In: Zhao H, Zeng A-P (eds) Advances in biochemical engineering/biotechnology. Springer, Cham, pp 117–146

    Google Scholar 

  14. Chapman J, Ismail AE, Dinu CZ (2018) Industrial applications of enzymes: recent advances, techniques, and outlooks. Catalysts 8:238. https://doi.org/10.3390/catal8060238

    Article  CAS  Google Scholar 

  15. Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307. https://doi.org/10.1002/adsc.200700082

    Article  CAS  Google Scholar 

  16. Nöth M, Gau E, Jung F et al (2020) Biocatalytic microgels (μ-gel: zymes): synthesis, concepts, and emerging applications. Green Chem 22:8183–8209. https://doi.org/10.1039/d0gc03229h

    Article  CAS  Google Scholar 

  17. Meyer J, Meyer LE, Kara S (2022) Enzyme immobilization in hydrogels: a perfect liaison for efficient and sustainable biocatalysis. Eng Life Sci 22:165–177. https://doi.org/10.1002/elsc.202100087

    Article  CAS  PubMed  Google Scholar 

  18. Liese A, Hilterhaus L (2013) Evaluation of immobilized enzymes for industrial applications. Chem Soc Rev 42:6236–6249. https://doi.org/10.1039/c3cs35511j

    Article  CAS  PubMed  Google Scholar 

  19. Zhou X, Wu H, Cui M et al (2018) Long-lived protein expression in hydrogel particles: towards artificial cells. Chem Sci 9:4275–4279. https://doi.org/10.1039/c8sc00383a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dubey NC, Tripathi BP, Müller M et al (2015) Enhanced activity of acetyl CoA synthetase adsorbed on smart microgel: an implication for precursor biosynthesis. ACS Appl Mater Interfaces 7:1500–1507. https://doi.org/10.1021/am5063376

    Article  CAS  PubMed  Google Scholar 

  21. Lai E, Wang Y, Wei Y et al (2016) Covalent immobilization of trypsin onto thermo-sensitive poly(N-isopropylacrylamide-co-acrylic acid) microspheres with high activity and stability. J Appl Polym Sci 133. https://doi.org/10.1002/app.43343

  22. Xu SW, Lu Y, Li J et al (2006) Efficient conversion of CO2 to methanol catalyzed by three dehydrogenases co-encapsulated in an alginate-silica (ALG-SiO2) hybrid gel. Ind Eng Chem Res 45:4567–4573. https://doi.org/10.1021/ie051407l

    Article  CAS  Google Scholar 

  23. Gawlitza K, Georgieva R, Tavraz N et al (2013) Immobilization of water-soluble HRP within poly-N-isopropylacrylamide microgel particles for use in organic media. Langmuir 29:16002–16009. https://doi.org/10.1021/la403598s

    Article  CAS  PubMed  Google Scholar 

  24. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121. https://doi.org/10.1016/J.JARE.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  25. Kopeček J (2007) Hydrogel biomaterials: a smart future? Biomaterials 28:5185–5192. https://doi.org/10.1016/J.BIOMATERIALS.2007.07.044

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fu J, In Het Panhuis M (2019) Hydrogel properties and applications. J Mater Chem B 7:1523–1525. https://doi.org/10.1039/C9TB90023C

    Article  CAS  PubMed  Google Scholar 

  27. Kühn S, Freyse J, Atallah P et al (2021) Tuning the network charge of biohybrid hydrogel matrices to modulate the release of SDF-1. Biol Chem 402:1453–1464. https://doi.org/10.1515/hsz-2021-0175

    Article  CAS  PubMed  Google Scholar 

  28. Zhang J, Zhu Y, Song J et al (2018) Novel balanced charged alginate/PEI polyelectrolyte hydrogel that resists foreign-body reaction. ACS Appl Mater Interfaces 10:6879–6886. https://doi.org/10.1021/acsami.7b17670

    Article  CAS  PubMed  Google Scholar 

  29. Zhao W, ** X, Cong Y et al (2013) Degradable natural polymer hydrogels for articular cartilage tissue engineering. J Chem Technol Biotechnol 88:327–339. https://doi.org/10.1002/jctb.3970

    Article  CAS  Google Scholar 

  30. Chen YM, Yang JJ, Gong JP (2009) Adhesion, spreading, and proliferation of endothelial cells on charged hydrogels. J Adhes 85:839–868. https://doi.org/10.1080/00218460903291486

    Article  CAS  Google Scholar 

  31. Ulijn RV, Bibi N, Jayawarna V et al (2007) Bioresponsive hydrogels. Mater Today 10:40–48. https://doi.org/10.1016/S1369-7021(07)70049-4

    Article  CAS  Google Scholar 

  32. Kopeček J, Yang J (2007) Hydrogels as smart biomaterials. Polym Int 56:1078–1098. https://doi.org/10.1002/pi.2253

    Article  CAS  Google Scholar 

  33. Tokarev I, Minko S (2009) Stimuli-responsive hydrogel thin films. Soft Matter 5:511–524. https://doi.org/10.1039/b813827c

    Article  CAS  Google Scholar 

  34. Koetting MC, Peters JT, Steichen SD, Peppas NA (2015) Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng R Rep 93:1–49. https://doi.org/10.1016/j.mser.2015.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chatterjee S, Hui PCL (2021) Review of applications and future prospects of stimuli-responsive hydrogel based on thermo-responsive biopolymers in drug delivery systems. Polymers (Basel) 13:2086. https://doi.org/10.3390/polym13132086

    Article  CAS  PubMed  Google Scholar 

  36. Jiang Y, Wang Y, Li Q et al (2019) Natural polymer-based stimuli-responsive hydrogels. Curr Med Chem 27:2631–2657. https://doi.org/10.2174/0929867326666191122144916

    Article  CAS  Google Scholar 

  37. Liu R, Fraylich M, Saunders BR (2009) Thermoresponsive copolymers: from fundamental studies to applications. Colloid Polym Sci 287:627–643. https://doi.org/10.1007/S00396-009-2028-X/METRICS

    Article  CAS  Google Scholar 

  38. Tang L, Wang L, Yang X et al (2021) Poly(N-isopropylacrylamide)-based smart hydrogels: design, properties and applications. Prog Mater Sci 115:100702. https://doi.org/10.1016/J.PMATSCI.2020.100702

    Article  CAS  Google Scholar 

  39. Wiese S, Spiess AC, Richtering W (2013) Microgel-stabilized smart emulsions for biocatalysis. Angew Chem Int Ed 52:576–579. https://doi.org/10.1002/anie.201206931

    Article  CAS  Google Scholar 

  40. Dubey NC, Tripathi BP, Stamm M, Ionov L (2014) Smart core-shell microgel support for acetyl coenzyme A synthetase: a step toward efficient synthesis of polyketide-based drugs. Biomacromolecules 15:2776–2783. https://doi.org/10.1021/bm5006382

    Article  CAS  PubMed  Google Scholar 

  41. Whitfield CJ, Banks AM, Dura G et al (2020) Cell-free protein synthesis in hydrogel materials. Chem Commun 56:7108–7111. https://doi.org/10.1039/d0cc02582h

    Article  CAS  Google Scholar 

  42. Heida T, Köhler T, Kaufmann A et al (2020) Cell-free protein synthesis in bifunctional hyaluronan microgels: a strategy for in situ immobilization and purification of his-tagged proteins. ChemSystemsChem 2:e1900058. https://doi.org/10.1002/syst.201900058

    Article  CAS  Google Scholar 

  43. Benítez-Mateos AI, Zeballos N, Comino N et al (2020) Microcompartmentalized cell-free protein synthesis in hydrogel μ-channels. ACS Synth Biol 9:2971–2978. https://doi.org/10.1021/acssynbio.0c00462

    Article  CAS  PubMed  Google Scholar 

  44. Srinivasan A, Bach H, Sherman DH, Dordick JS (2004) Bacterial P450-catalyzed polyketide hydroxylation on a microfluidic platform. Biotechnol Bioeng 88:528–535. https://doi.org/10.1002/bit.20285

    Article  CAS  PubMed  Google Scholar 

  45. Limadinata PA, Li A, Li Z (2015) Temperature-responsive nanobiocatalysts with an upper critical solution temperature for high performance biotransformation and easy catalyst recycling: efficient hydrolysis of cellulose to glucose. Green Chem 17:1194–1203. https://doi.org/10.1039/C4GC01742K

    Article  CAS  Google Scholar 

  46. Dubey NC, Tripathi BP, Müller M et al (2016) Bienzymatic sequential reaction on microgel particles and their cofactor dependent applications. Biomacromolecules 17:1610–1620. https://doi.org/10.1021/acs.biomac.5b01745

    Article  CAS  PubMed  Google Scholar 

  47. Byun JY, Lee KH, Lee KY et al (2013) In-gel expression and in situ immobilization of proteins for generation of three dimensional protein arrays in a hydrogel matrix. Lab Chip 13:886–891. https://doi.org/10.1039/C2LC41137G

    Article  CAS  PubMed  Google Scholar 

  48. Köhler T, Heida T, Hoefgen S et al (2020) Cell-free protein synthesis and in situ immobilization of deGFP-MatB in polymer microgels for malonate-to-malonyl CoA conversion. RSC Adv 10:40588–40596. https://doi.org/10.1039/D0RA06702D

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lee KH, Lee KY, Byun JY et al (2012) On-bead expression of recombinant proteins in an agarose gel matrix coated on a glass slide. Lab Chip 12:1605–1610. https://doi.org/10.1039/C2LC21239K

    Article  CAS  PubMed  Google Scholar 

  50. Shimizu Y, Inoue A, Tomari Y et al (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19:751–755. https://doi.org/10.1038/90802

    Article  CAS  PubMed  Google Scholar 

  51. Lai SN, Zhou X, Ouyang X et al (2020) Artificial cells capable of long-lived protein synthesis by using aptamer grafted polymer hydrogel. ACS Synth Biol 9:76–83. https://doi.org/10.1021/acssynbio.9b00338

    Article  CAS  PubMed  Google Scholar 

  52. Zou Z, Gau E, El-Awaad I et al (2019) Selective functionalization of microgels with enzymes by sortagging. Bioconjug Chem 30:2859–2869. https://doi.org/10.1021/acs.bioconjchem.9b00568

    Article  CAS  PubMed  Google Scholar 

  53. Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 97(9):537–550. https://doi.org/10.1038/nrd3141

    Article  CAS  Google Scholar 

  54. Kökpinar Ö, Walter JG, Shoham Y et al (2011) Aptamer-based downstream processing of his-tagged proteins utilizing magnetic beads. Biotechnol Bioeng 108:2371–2379. https://doi.org/10.1002/BIT.23191

    Article  PubMed  Google Scholar 

  55. Tsuji S, Tanaka T, Hirabayashi N et al (2009) RNA aptamer binding to polyhistidine-tag. Biochem Biophys Res Commun 386:227–231. https://doi.org/10.1016/J.BBRC.2009.06.014

    Article  CAS  PubMed  Google Scholar 

  56. Popp MW, Antos JM, Grotenbreg GM et al (2007) Sortagging: a versatile method for protein labeling. Nat Chem Biol 311(3):707–708. https://doi.org/10.1038/nchembio.2007.31

    Article  CAS  Google Scholar 

  57. Nöth M, Zou Z, El-Awaad I et al (2021) A peptide-based coating toolbox to enable click chemistry on polymers, metals, and silicon through sortagging. Biotechnol Bioeng 118:1520–1530. https://doi.org/10.1002/BIT.27666

    Article  PubMed  Google Scholar 

  58. Ritzefeld M (2014) Sortagging: a robust and efficient chemoenzymatic ligation strategy. Chem – A Eur J 20:8516–8529. https://doi.org/10.1002/CHEM.201402072

    Article  CAS  Google Scholar 

  59. De Hoog HPM, Arends IWCE, Rowan AE et al (2010) A hydrogel-based enzyme-loaded polymersome reactor. Nanoscale 2:709–716. https://doi.org/10.1039/b9nr00325h

    Article  CAS  PubMed  Google Scholar 

  60. Baltussen MG, Van De Wiel J, Fernández Regueiro CL et al (2022) A Bayesian approach to extracting kinetic information from artificial enzymatic networks. Anal Chem. https://doi.org/10.1021/acs.analchem.2c00659

  61. Liu H, Nakagawa K, Kato DI et al (2011) Enzyme encapsulation in freeze-dried bionanocomposites prepared from chitosan and xanthan gum blend. Mater Chem Phys 129:488–494. https://doi.org/10.1016/J.MATCHEMPHYS.2011.04.043

    Article  CAS  Google Scholar 

  62. Wang Y, Shah V, Lu A et al (2021) Counting of enzymatically amplified affinity reactions in hydrogel particle-templated drops. Lab Chip 21:3438–3448. https://doi.org/10.1039/D1LC00344E

    Article  CAS  PubMed  Google Scholar 

  63. Li Y, Guo D, Zheng B (2012) Rehydratable gel for rapid loading of nanoliter solution and its application in protein crystallization. RSC Adv 2:4857–4863. https://doi.org/10.1039/C2RA20511D/

    Article  CAS  Google Scholar 

  64. Sigolaeva LV, Gladyr SY, Gelissen APH et al (2014) Dual-stimuli-sensitive microgels as a tool for stimulated spongelike adsorption of biomaterials for biosensor applications. Biomacromolecules 15:3735–3745. https://doi.org/10.1021/bm5010349

    Article  CAS  PubMed  Google Scholar 

  65. Bahar T, Tuncel A (2002) Immobilization of invertase onto crosslinked poly(p-chloromethylstyrene) beads. J Appl Polym Sci 83:1268–1279. https://doi.org/10.1002/APP.2294

    Article  CAS  Google Scholar 

  66. Yang C, Zhang Z, Shi Z et al (2010) Development of a novel enzyme reactor and application as a chemiluminescence flow-through biosensor. Anal Bioanal Chem 3977(397):2997–3003. https://doi.org/10.1007/S00216-010-3805-6

    Article  Google Scholar 

  67. Li X, **ong Y (2022) Application of “click” chemistry in biomedical hydrogels. ACS Omega 7:36918–36928. https://doi.org/10.1021/acsomega.2c03931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Malkoch M, Vestberg R, Gupta N et al (2006) Synthesis of well-defined hydrogel networks using click chemistry. Chem Commun:2774–2776. https://doi.org/10.1039/b603438a

  69. Yigit S, Sanyal R, Sanyal A (2011) Fabrication and functionalization of hydrogels through “click” chemistry. Chem – An Asian J 6:2648–2659. https://doi.org/10.1002/asia.201100440

    Article  CAS  Google Scholar 

  70. Pardee K, Green AA, Ferrante T et al (2014) Paper-based synthetic gene networks. Cell 159:940–954. https://doi.org/10.1016/j.cell.2014.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Carlson ED, Gan R, Hodgman CE, Jewett MC (2012) Cell-free protein synthesis: applications come of age. Biotechnol Adv 30:1185–1194. https://doi.org/10.1016/J.BIOTECHADV.2011.09.016

    Article  CAS  PubMed  Google Scholar 

  72. Lu Y (2017) Cell-free synthetic biology: engineering in an open world. Synth Syst Biotechnol 2:23–27. https://doi.org/10.1016/J.SYNBIO.2017.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lim SY, Kim KO, Kim DM, Park CB (2009) Silica-coated alginate beads for in vitro protein synthesis via transcription/translation machinery encapsulation. J Biotechnol 143:183–189. https://doi.org/10.1016/J.JBIOTEC.2009.07.006

    Article  CAS  PubMed  Google Scholar 

  74. Zemella A, Thoring L, Hoffmeister C, Kubick S (2015) Cell-free protein synthesis: pros and cons of prokaryotic and eukaryotic systems. Chembiochem 16:2420–2431. https://doi.org/10.1002/CBIC.201500340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Noireaux V, Libchaber A (2004) A vesicle bioreactor as a step toward an artificial cell assembly. Proc Natl Acad Sci U S A 101:17669–17674. https://doi.org/10.1073/pnas.0408236101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Niederholtmeyer H, Stepanoèa È, Maerkl SJ (2013) Implementation of cell-free biological networks at steady state. Proc Natl Acad Sci U S A 110:15985–15990. https://doi.org/10.1073/pnas.1311166110

    Article  PubMed  PubMed Central  Google Scholar 

  77. Spirin AS, Baranov VI, Ryabova LA et al (1988) A continuous cell-free translation system capable of producing polypeptides in high yield. Science 242:1162–1164. https://doi.org/10.1126/science.3055301

    Article  CAS  PubMed  Google Scholar 

  78. Ouyang X, Zhou X, Lai SN et al (2021) Immobilization of proteins of cell extract to hydrogel networks enhances the longevity of cell-free protein synthesis and supports gene networks. ACS Synth Biol 10:749–755. https://doi.org/10.1021/acssynbio.0c00541

    Article  CAS  PubMed  Google Scholar 

  79. Morelli MJ, Allen RJ, Rein Ten Wolde P (2011) Effects of macromolecular crowding on genetic networks. Biophys J 101:2882–2891. https://doi.org/10.1016/j.bpj.2011.10.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gnutt D, Ebbinghaus S (2016) The macromolecular crowding effect – from in vitro into the cell. Biol Chem 397:37–44. https://doi.org/10.1515/hsz-2015-0161

    Article  CAS  PubMed  Google Scholar 

  81. Rivas G, Minton AP (2016) Macromolecular crowding in vitro, in vivo, and in between. Trends Biochem Sci 41:970–981. https://doi.org/10.1016/j.tibs.2016.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ellis RJ (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26:597–604. https://doi.org/10.1016/S0968-0004(01)01938-7

    Article  CAS  PubMed  Google Scholar 

  83. Cui J, Wu D, Sun Q et al (2020) A PEGDA/DNA hybrid hydrogel for cell-free protein synthesis. Front Chem 8:28. https://doi.org/10.3389/fchem.2020.00028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Park N, Kahn JS, Rice EJ et al (2009) High-yield cell-free protein production from P-gel. Nat Protoc 4:1759–1770. https://doi.org/10.1038/nprot.2009.174

    Article  CAS  PubMed  Google Scholar 

  85. Park N, Um SH, Funabashi H et al (2009) A cell-free protein-producing gel. Nat Mater 85(8):432–437. https://doi.org/10.1038/nmat2419

    Article  CAS  Google Scholar 

  86. Jiao Y, Liu Y, Luo D et al (2018) Microfluidic-assisted fabrication of clay microgels for cell-free protein synthesis. ACS Appl Mater Interfaces 10:29308–29313. https://doi.org/10.1021/acsami.8b09324

    Article  CAS  PubMed  Google Scholar 

  87. Oikawa H, Tokiwano T (2004) Enzymatic catalysis of the Diels–Alder reaction in the biosynthesis of natural products. Nat Prod Rep 21:321–352. https://doi.org/10.1039/B305068H

    Article  CAS  PubMed  Google Scholar 

  88. Walsh CT, Wencewicz TA (2012) Flavoenzymes: versatile catalysts in biosynthetic pathways. Nat Prod Rep 30:175–200. https://doi.org/10.1039/C2NP20069D

    Article  Google Scholar 

  89. Wu X (2022) Multi-enzymatic hydrogel system for biosynthesis. The Chinese University of Hong Kong

    Google Scholar 

  90. Aehle W (2007) Enzymes in industry: production and applications.3rd edn. Wiley

    Book  Google Scholar 

  91. Rozzell JD (1999) Commercial scale biocatalysis: myths and realities. Bioorg Med Chem 7:2253–2261. https://doi.org/10.1016/S0968-0896(99)00159-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support from Shenzhen Bay Laboratory (No. 21280031 and S211101001-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, H., Zheng, B. (2023). Hydrogel-Based Multi-enzymatic System for Biosynthesis. In: Lu, Y., Jewett, M.C. (eds) Cell-free Production. Advances in Biochemical Engineering/Biotechnology, vol 186. Springer, Cham. https://doi.org/10.1007/10_2023_220

Download citation

Publish with us

Policies and ethics

Navigation