Human–Device Interaction in the Life Science Laboratory

  • Chapter
  • First Online:
Smart Biolabs of the Future

Abstract

The interaction of the human user with equipment and software is a central aspect of the work in the life science laboratory. The enhancement of the usability and intuition of software and hardware products, as well as holistic interaction solutions are a demand from all stakeholders in the scientific laboratory who desire more efficient workflows. Shorter training periods, parallelization of workflows, improved data integrity, and enhanced safety are only a few advantages innovative intuitive human-device-interfaces can bring. With recent advances in artificial intelligence (AI), the availability of smart devices, as well as unified communication protocols, holistic interaction solutions are on the rise. Future interaction in the laboratory will not be limited to pushing mechanical buttons on equipment. Instead, the interplay between voice, gestures, and innovative hard- and software components will drive interactions in the laboratory into a more streamlined future.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Parts of chapter “Natural User Interfaces in the Laboratory” have been adapted and revised from the doctoral thesis of J. Austerjost [1].

References

  1. Austerjost J. Entwicklung und Evaluation innovativer Automations- und Digitalisierungslösungen für die chemische und biotechnologische Laborumgebung. https://portal.dnb.de/opac.htm?method=simpleSearch&cqlMode=true&query=idn%3D119365730X. Accessed 25 Aug 2021

  2. Kauffman GB (1989) The making of modern chemistry. Nature 338:699–700

    Article  Google Scholar 

  3. Olsen K (2012) The first 110 years of laboratory automation: technologies, applications, and the creative scientist. J Lab Autom 17:469–480. https://doi.org/10.1177/2211068212455631

    Article  PubMed  Google Scholar 

  4. Morschett H, Tenhaef N, Hemmerich J et al (2021) Robotic integration enables autonomous operation of laboratory scale stirred tank bioreactors with model-driven process analysis. Biotechnol Bioeng 118:2759–2769. https://doi.org/10.1002/bit.27795

    Article  CAS  PubMed  Google Scholar 

  5. Trapp W (1989) Von den Anfängen der Massebestimmung zur elektromechanischen Waage. In: Handbuch des Wägens. Vieweg+Teubner Verlag, Wiesbaden, pp 1–38

    Google Scholar 

  6. Pryce FN, Lang ML, Gill DWJ (2016) Weighing instruments. In: Oxford research encyclopedia of classics. Oxford University Press

    Google Scholar 

  7. Jenemann HR (1982) Zur Geschichte der mechanischen Laboratoriumswaage. Phys J 38:316–322. https://doi.org/10.1002/phbl.19820381008

    Article  Google Scholar 

  8. Maiwald M (2020) The internet of things in the lab and in process – the digital transformation challenges for the laboratory 4.0. https://q-more.chemeurope.com/q-more-articles/313/the-internet-of-things-in-the-lab-and-in-process.html. Accessed 2 Aug 2021

  9. Beussman DJ, Walters JP (2017) Complete LabVIEW-controlled HPLC lab: an advanced undergraduate experience. J Chem Educ 94:1527–1532. https://doi.org/10.1021/ACS.JCHEMED.7B00041

    Article  CAS  Google Scholar 

  10. Thakur G, Hebbi V, Rathore AS (2020) An NIR-based PAT approach for real-time control of loading in protein A chromatography in continuous manufacturing of monoclonal antibodies. Biotechnol Bioeng 117:673–686. https://doi.org/10.1002/BIT.27236

    Article  CAS  PubMed  Google Scholar 

  11. Holmqvist A, Sellberg A (2016) A generic PAT software interface for on-line monitoring and control of chromatographic separation systems. Comput Aided Chem Eng 38:811–816. https://doi.org/10.1016/B978-0-444-63428-3.50140-5

    Article  CAS  Google Scholar 

  12. Wheeler MJ (2007) Overview on robotics in the laboratory. Ann Clin Biochem 44:209–218. https://doi.org/10.1258/000456307780480873

    Article  CAS  PubMed  Google Scholar 

  13. Zucchelli P, Horak G, Skinner N (2021) Highly versatile cloud-based automation solution for the remote design and execution of experiment protocols during the COVID-19 pandemic. SLAS Technol 26:127–139. https://doi.org/10.1177/2472630320971218

    Article  CAS  PubMed  Google Scholar 

  14. Elliott C, Vijayakumar V, Zink W, Hansen R (2016) National Instruments LabVIEW: a programming environment for laboratory automation and measurement. JALA 12:17–24. https://doi.org/10.1016/J.JALA.2006.07.012

    Article  Google Scholar 

  15. Williams AJ, Ekins S, Clark AM et al (2011) Mobile apps for chemistry in the world of drug discovery. Drug Discov Today 16:928–939. https://doi.org/10.1016/J.DRUDIS.2011.09.002

    Article  CAS  PubMed  Google Scholar 

  16. Austerjost J, Porr M, Riedel N et al (2018) Introducing a virtual assistant to the lab: a voice user Interface for the intuitive control of laboratory instruments. SLAS Technol Transl Life Sci Innov. https://doi.org/10.1177/2472630318788040

  17. Naese JA, McAteer D, Hughes KD et al (2019) Use of augmented reality in the instruction of analytical instrumentation design. J Chem Educ 96:593–596. https://doi.org/10.1021/ACS.JCHEMED.8B00794

    Article  CAS  Google Scholar 

  18. An J, Poly L-P, Holme TA (2019) Usability testing and the development of an augmented reality application for laboratory learning. J Chem Educ 97:97–105. https://doi.org/10.1021/ACS.JCHEMED.9B00453

    Article  Google Scholar 

  19. Jones RB (2000) Life before and after computers in the general chemistry laboratory. J Chem Educ 77:1085–1087. https://doi.org/10.1021/ed077p1085

    Article  CAS  Google Scholar 

  20. Rojas R (1997) Konrad Zuse’s legacy: the architecture of the Z1 and Z3. IEEE Ann Hist Comput 19:5–16. https://doi.org/10.1109/85.586067

    Article  Google Scholar 

  21. Göde B, Holzmüller-Laue S, Rimane K et al (2007) Laboratory information management systems – an approach as an integration platform within flexible laboratory automation for application in life sciences. In: Proceedings of 3rd IEEE international conference on automation science and engineering. IEEE, pp 841–845. https://doi.org/10.1109/COASE.2007.4341780

    Chapter  Google Scholar 

  22. Rubacha M, Rattan AK, Hosselet SC (2011) A review of electronic laboratory notebooks available in the market today. J Lab Autom 16:90–98. https://doi.org/10.1016/J.JALA.2009.01.002

    Article  CAS  PubMed  Google Scholar 

  23. Sagmeister P, Wechselberger P, Jazini M et al (2013) Soft sensor assisted dynamic bioprocess control: efficient tools for bioprocess development. Chem Eng Sci 96:190–198. https://doi.org/10.1016/J.CES.2013.02.069

    Article  CAS  Google Scholar 

  24. Zhang D, Del Rio-Chanona EA, Petsagkourakis P, Wagner J (2019) Hybrid physics-based and data-driven modeling for bioprocess online simulation and optimization. Biotechnol Bioeng 116:2919–2930. https://doi.org/10.1002/BIT.27120

    Article  PubMed  Google Scholar 

  25. Ceruzzi PE (1981) The early computers of Konrad Zuse, 1935 to 1945. Ann Hist Comput 3:241–262. https://doi.org/10.1109/MAHC.1981.10034

    Article  Google Scholar 

  26. Auerbach AA, Shaw RF, Eckert JP et al (1952) The binac. Proc IRE 40:12–29. https://doi.org/10.1109/JRPROC.1952.273922

    Article  Google Scholar 

  27. Wadlow TA (1981) The xerox alto computer. BYTE Mag:58–68

    Google Scholar 

  28. Pouzin L. The origin of the shell. https://www.multicians.org/shell.html. Accessed 15 July 2021

  29. Glementi E (1967) Chemistry and computers. Int J Quantum Chem 1:307–312. https://doi.org/10.1002/qua.560010636

    Article  Google Scholar 

  30. Härle C, Barth M, Fay A (2018) Process simulation on single-board computers. In: IEEE international conference on automation science and engineering. IEEE Computer Society, pp 1548–1555

    Google Scholar 

  31. Ulbrich M, Aggarwal V (2019) The digital revolution is coming to chemical laboratories. J Bus Chem 2:76

    Google Scholar 

  32. Chng JJK, Patuwo MY (2021) Building a raspberry pi spectrophotometer for undergraduate chemistry classes. J Chem Educ 98:682–688. https://doi.org/10.1021/acs.jchemed.0c00987

    Article  CAS  Google Scholar 

  33. Foster SW, Alirangues MJ, Naese JA et al (2019) A low-cost, open-source digital stripchart recorder for chromatographic detectors using a raspberry pi. J Chromatogr A 1603:396–400. https://doi.org/10.1016/j.chroma.2019.03.070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barthels F, Barthels U, Schwickert M, Schirmeister T (2020) FINDUS: an open-source 3D printable liquid-handling workstation for laboratory automation in life sciences. SLAS Technol 25:190–199. https://doi.org/10.1177/2472630319877374

    Article  CAS  PubMed  Google Scholar 

  35. Gibbon GA (1996) A brief history of LIMS. Lab Autom Inf Manag 32:1–5. https://doi.org/10.1016/1381-141X(95)00024-K

    Article  Google Scholar 

  36. Eisen K, Eifert T, Herwig C, Maiwald M (2020) Current and future requirements to industrial analytical infrastructure—part 1: process analytical laboratories. Anal Bioanal Chem 412:2027–2035. https://doi.org/10.1007/s00216-020-02420-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Apte A, Paul S, Gade A, Compton C (2017) Accelerating clinical research using cloud technology. In: Cancer research. American Association for Cancer Research, p 2606

    Google Scholar 

  38. Kranjc T (2021) Introduction to laboratory software solutions and differences between them. In: Digital transformation of the laboratory. Wiley, pp 75–84

    Chapter  Google Scholar 

  39. Hayden EC (2014) The automated lab. Nature 516:131–132. https://doi.org/10.1038/516131a

    Article  CAS  Google Scholar 

  40. Emerald Cloud Lab: remote controlled life sciences lab. https://www.emeraldcloudlab.com/. Accessed 23 July 2021

  41. Mandenius C-F, Brundin A (2008) Bioprocess optimization using design-of-experiments methodology. Biotechnol Prog 24:1191–1203. https://doi.org/10.1002/BTPR.67

    Article  CAS  PubMed  Google Scholar 

  42. Fricke J, Pohlmann K, Jonescheit NA et al (2013) Designing a fully automated multi-bioreactor plant for fast DoE optimization of pharmaceutical protein production. Biotechnol J 8:738–747. https://doi.org/10.1002/BIOT.201200190

    Article  CAS  PubMed  Google Scholar 

  43. Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58:109–130. https://doi.org/10.1016/S0169-7439(01)00155-1

    Article  CAS  Google Scholar 

  44. MODDE® – Design of experiments software. Sartorius. https://www.sartorius.com/en/products/process-analytical-technology/data-analytics-software/doe-software/modde. Accessed 23 July 2021

  45. Bär H, Hochstrasser R, Papenfuß B (2012) SiLA: basic standards for rapid integration in laboratory automation. J Lab Autom 17:86–95. https://doi.org/10.1177/2211068211424550

    Article  PubMed  Google Scholar 

  46. Bernshausen J, Haller A, Holm T et al (2016) Namur modul type package – definition. atp Ed 58:72. https://doi.org/10.17560/atp.v58i01-02.554

    Article  Google Scholar 

  47. Hannelius T, Salmenperä M, Kuikka S (2008) Roadmap to adopting OPC UA. In: IEEE int conf ind informatics. IEEE, pp 756–761. https://doi.org/10.1109/INDIN.2008.4618203

    Chapter  Google Scholar 

  48. Networked laboratory equipment. SPECTARIS. https://www.spectaris.de/en/association/thespectarisindustries/networked-laboratory-equipment/. Accessed 23 July 2021

  49. Chambers D (1994) Decentralized management of laboratory automation. J Automat Chem 16:135–137. https://doi.org/10.1155/S1463924694000143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fernandez RAS, Sanchez-Lopez JL, Sampedro C et al (2016) Natural user interfaces for human-drone multi-modal interaction. In: 2016 international conference on unmanned aircraft systems, ICUAS 2016. IEEE, pp 1013–1022

    Google Scholar 

  51. Xu W, Lee E-J (2012) Human-computer natural user Interface based on hand motion detection and tracking. J Korea Multimed Soc 15:501–507. https://doi.org/10.9717/kmms.2012.15.4.501

    Article  Google Scholar 

  52. Vuletic T, Duffy A, Hay L et al (2019) Systematic literature review of hand gestures used in human computer interaction interfaces. Int J Hum Comput Stud 129:74–94. https://doi.org/10.1016/j.ijhcs.2019.03.011

    Article  Google Scholar 

  53. Mewes A, Hensen B, Wacker F, Hansen C (2017) Touchless interaction with software in interventional radiology and surgery: a systematic literature review. Int J Comput Assist Radiol Surg 12:291–305

    Article  Google Scholar 

  54. Minagawa A, Odagiri J, Hotta Y et al (2014) Touchless user interface utilizing several types of sensing technology. Fujitsu Sci Tech J 50(1):34–39

    Google Scholar 

  55. Shan C (2010) Gesture control for consumer electronics. Springer, London, pp 107–128

    Google Scholar 

  56. Ionescu D, Ionescu B, Gadea C, Islam S (2012) Gesture control: a new and intelligent man-machine interface. In: Applied computational intelligence in engineering and information technology. Springer, Berlin, pp 331–354. https://doi.org/10.1007/978-3-642-28305-5_26

    Chapter  Google Scholar 

  57. Scholl PM, Wille M, Van Laerhoven K (2015) A laboratory system for capturing and guiding experiments. In: UbiComp 2015 – proceedings of the 2015 ACM international joint conference on pervasive and ubiquitous computing. ACM, pp 589–599

    Chapter  Google Scholar 

  58. Lab balance stabilization & automatic levelling. Cubis® II. Sartorius. https://www.sartorius.com/en/products/weighing/laboratory-balances/cubis-ii/highlights. Accessed 20 July 2021

  59. Raucci U, Valentini A, Pieri E et al (2021) Voice-controlled quantum chemistry. Nat Comput Sci 1:42–45. https://doi.org/10.1038/s43588-020-00012-9

    Article  Google Scholar 

  60. C1000 Touch Thermal Cycler. Life science research. Bio-Rad. https://www.bio-rad.com/de-de/product/c1000-touch-thermal-cycler?ID=LGTW9415. Accessed 26 July 2021

  61. Introducing our new ultra-low temperature user interface. Thermo Fisher Scientific – DE. https://www.thermofisher.com/de/de/home/products-and-services/promotions/life-science/introducing-ultra-low-temperature-user-interface.html. Accessed 26 July 2021

  62. MOBILE DEVICE: definition in the Cambridge english dictionary. https://dictionary.cambridge.org/us/dictionary/english/mobile-device. Accessed 24 Jun 2021

  63. Was ist ein mobiles Endgerät? https://www.mobile-zeitgeist.com/was-ist-ein-mobiles-endgeraet/. Accessed 29 Oct 2018

  64. Mobile endgeräte. Munich Digital Institute. https://www.munich-digital.com/insights/fachartikel/was-ist-ein-mobiles-endgeraet. Accessed 29 July 2021

  65. Smartphone: mächtige sensoren. ZEIT ONLINE. https://www.zeit.de/digital/mobil/2014-05/smartphone-sensoren-iphone-samsung. Accessed 30 July 2021

  66. 81% der Internetnutzer gehen per Handy oder Smartphone ins Internet. https://www.destatis.de/DE/PresseService/Presse/Pressemitteilungen/2016/12/PD16_430_63931pdf.pdf?__blob=publicationFile. Accessed 12 July 2021

  67. Tablets, PCs und smartphones – Prognostizierter Absatz bis 2024. Statista. https://de.statista.com/statistik/daten/studie/256337/umfrage/prognose-zum-weltweiten-absatz-von-tablets-pcs-und-smartphones/. Accessed 2 Aug 2021

  68. Absatz von Notebooks weltweit bis 2021. Statista. https://de.statista.com/statistik/daten/studie/784224/umfrage/weltweite-absatzzahlen-von-notebooks/. Accessed 2 Aug 2021

  69. Desktop-PC – Weltweiter Absatz 2009–2024. Statista. https://de.statista.com/statistik/daten/studie/160874/umfrage/prognose-zum-weltweiten-absatz-von-desktop-pc-seit-2009/. Accessed 2 Aug 2021

  70. Goadrich MH, Rogers MP (2011) Smart smartphone development. In: Proc 42nd ACM tech symp comput sci educ – SIGCSE ‘11. ACM, p 607. https://doi.org/10.1145/1953163.1953330

    Chapter  Google Scholar 

  71. Rossing JP, Miller WM, Cecil AK, Stamper SE (2012) iLearning: the future of higher education? Student perceptions on learning with mobile tablets. J Scholarsh Teach Learn 12:1–26

    Google Scholar 

  72. Flatt H, Koch N, Röcker C et al (2015) A context-aware assistance system for maintenance applications in smart factories based on augmented reality and indoor localization. In: IEEE int conf emerg technol fact autom ETFA 2015-octob. IEEE, pp 1–4. https://doi.org/10.1109/ETFA.2015.7301586

    Chapter  Google Scholar 

  73. McQueen A, Cress C, Tothy A (2012) Using a tablet computer during pediatric procedures a case series and review of the “apps”. Pediatr Emerg Care 28:712–714. https://doi.org/10.1097/PEC.0b013e31825d24eb

    Article  PubMed  Google Scholar 

  74. Waldrop MM (2016) The chips are down for Moore’s law. Nature 530:144–147. https://doi.org/10.1038/530144a

    Article  CAS  PubMed  Google Scholar 

  75. Cecchinato ME, Cox AL, Bird J (2015) Smartwatches: the good, the bad and the ugly? In: Proc 33rd annu ACM conf ext abstr hum factors comput syst – CHI EA ’15. ACM, pp 2133–2138. https://doi.org/10.1145/2702613.2732837

    Chapter  Google Scholar 

  76. Syberfeldt A, Danielsson O, Gustavsson P (2017) Augmented reality smart glasses in the smart factory: product evaluation guidelines and review of available products. IEEE Access 5:9118–9130. https://doi.org/10.1109/ACCESS.2017.2703952

    Article  Google Scholar 

  77. Gan SK-E, Poon J-K (2016) The world of biomedical apps: their uses, limitations, and potential. Sci Phone Apps Mob Devices 2:6. https://doi.org/10.1186/s41070-016-0009-2

    Article  Google Scholar 

  78. Contreras-naranjo JC, Wei Q, Ozcan A (2016) Mobile phone-based microscopy, sensing, and diagnostics. IEEE J Select Topics Quantum Electron 22. https://doi.org/10.1109/JSTQE.2015.2478657

  79. Libman D, Huang L (2013) Chemistry on the go: review of chemistry apps on smartphones. J Chem Educ 90:320–325. https://doi.org/10.1021/ed300329e

    Article  CAS  Google Scholar 

  80. Austerjost J, Marquard D, Raddatz L et al (2017) A smart device application for the automated determination of E. coli colonies on agar plates. Eng Life Sci 17:959–966. https://doi.org/10.1002/elsc.201700056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Long KD, Yu H, Cunningham BT (2014) Smartphone instrument for portable enzyme- linked immunosorbent assays. Biomed Opt Express 5:3792. https://doi.org/10.1364/BOE.5.003792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu Y, Liu Q, Chen S et al (2015) Surface plasmon resonance biosensor based on smart phone platforms. Sci Rep 5:12864. https://doi.org/10.1038/srep12864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Williams AJ, Pence HE (2011) Smart phones, a powerful tool in the chemistry classroom. J Chem Educ 88:683–686

    Article  CAS  Google Scholar 

  84. Libman D, Huang L (2013) Chemistry on the go: review of chemistry apps on smartphones. J Chem Educ 90:320–325

    Article  CAS  Google Scholar 

  85. Krieger E, Vriend G (2014) YASARA view – molecular graphics for all devices – from smartphones to workstations. Bioinformatics 30:2981–2982. https://doi.org/10.1093/bioinformatics/btu426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Biological buffer calculator on the app store. https://itunes.apple.com/us/app/biological-buffer-calculator/id408368126?mt=8. Accessed 23 July 2021

  87. Periodensystem – android-apps auf google play. https://play.google.com/store/search?q=periodensystem&c=apps. Accessed 23 July 2021

  88. Baumgart DC (2011) Smartphones in clinical practice, medical education, and research. Arch Intern Med 171:1294. https://doi.org/10.1001/archinternmed.2011.320

    Article  PubMed  Google Scholar 

  89. Clark AM, Ekins S, Williams AJ (2012) Redefining cheminformatics with intuitive collaborative mobile apps. Mol Inform 31:569–584. https://doi.org/10.1002/minf.201200010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Warr WA (2015) App-etite for change. J Comput Aided Mol Des 29:297–303. https://doi.org/10.1007/s10822-014-9824-1

    Article  CAS  PubMed  Google Scholar 

  91. Baker M (2016) 1,500 scientists lift the lid on reproducibility. Nature 533:452–454. https://doi.org/10.1038/533452a

    Article  CAS  PubMed  Google Scholar 

  92. Wilkinson MD, Dumontier M, Aalbersberg IJ et al (2016) The FAIR guiding principles for scientific data management and stewardship. Sci Data 3:1–9. https://doi.org/10.1038/sdata.2016.18

    Article  Google Scholar 

  93. Van Dyke AR, Smith-Carpenter J (2017) Bring your own device: a digital notebook for undergraduate biochemistry laboratory using a free, cross-platform application. J Chem Educ 94:656–661. https://doi.org/10.1021/acs.jchemed.6b00622

    Article  CAS  Google Scholar 

  94. Guerrero S, Dujardin G, Cabrera-Andrade A et al (2016) Analysis and implementation of an electronic laboratory notebook in a biomedical research institute. PLoS One 11. https://doi.org/10.1371/journal.pone.0160428

  95. Bird CL, Willoughby C, Frey JG (2013) Laboratory notebooks in the digital era: the role of ELNs in record kee** for chemistry and other sciences. Chem Soc Rev 42:8157. https://doi.org/10.1039/c3cs60122f

    Article  CAS  PubMed  Google Scholar 

  96. Promega protocols on the app store. https://itunes.apple.com/us/app/promega-protocols/id947048912?mt=8. Accessed 24 July 2021

  97. Avanti JXN-26 stand-Kühlzentrifugen. Beckman Coulter. https://www.beckman.de/centrifuges/high-speed/avanti-jxn-26. Accessed 24 July 2021

  98. QuantStudio 3 real-time PCR system – DE. https://www.thermofisher.com/de/de/home/life-science/pcr/real-time-pcr/real-time-pcr-instruments/quantstudio-3-5-real-time-pcr-system/quantstudio-3.html. Accessed 24 July 2021

  99. LyoBeta. Telstar life science solutions. https://www.telstar-lifesciences.com/Technologies/Freeze Drying Systems/Laboratory Freeze Dryers/LyoBeta.htm. Accessed 24 July 2021

  100. Mobile Funktionen für LIMS. Abbott Informatics. https://www.informatics.abbott/int/de/offerings/mobile. Accessed 24 July 2021

  101. Connecting lab instruments: interface strategies depend upon compliance requirements. https://www.labmanager.com/laboratory-technology/2018/07/connecting-lab-instruments-interface-strategies-depend-upon-compliance-requirements. Accessed 6 July 2021

  102. Schmid I, Aschoff J (2017) A scalable software framework for data integration in bioprocess development. Eng Life Sci 17:1159–1165. https://doi.org/10.1002/elsc.201600008

    Article  CAS  PubMed  Google Scholar 

  103. Miller BA, Nixon T, Tai C, Wood MD (2001) Home networking with universal plug and play. IEEE Commun Mag 39:104–109. https://doi.org/10.1109/35.968819

    Article  Google Scholar 

  104. Remple TB (2003) USB on-the-go interface for portable devices. In: 2003 IEEE international conference on consumer electronics, 2003. ICCE. IEEE, pp 8–9

    Chapter  Google Scholar 

  105. Gauglitz G (2018) Lab 4.0: SiLA or OPC UA. Anal Bioanal Chem 410:5093–5094

    Article  CAS  Google Scholar 

  106. Ozcan A (2014) Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools. Lab Chip 14(17):3187–3194. https://doi.org/10.1039/c4lc00010b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ceylan Koydemir H, Ozcan A (2018) Smartphones democratize advanced biomedical instruments and foster innovation. Clin Pharmacol Ther 104:38–41. https://doi.org/10.1002/cpt.1081

    Article  PubMed  Google Scholar 

  108. Nemcova A, Jordanova I, Varecka M et al (2020) Monitoring of heart rate, blood oxygen saturation, and blood pressure using a smartphone. Biomed Signal Process Control 59. https://doi.org/10.1016/j.bspc.2020.101928

  109. Gopinath SCB, Tang TH, Chen Y et al (2014) Bacterial detection: from microscope to smartphone. Biosens Bioelectron 60:332–342

    Article  CAS  Google Scholar 

  110. Coulibaly JT, Ouattara M, D’Ambrosio MV et al (2016) Accuracy of mobile phone and handheld light microscopy for the diagnosis of schistosomiasis and intestinal protozoa infections in Côte d’Ivoire. PLoS Negl Trop Dis 10:e0004768. https://doi.org/10.1371/journal.pntd.0004768

    Article  PubMed  PubMed Central  Google Scholar 

  111. Contreras-Naranjo JC, Wei Q, Ozcan A (2016) Mobile phone-based microscopy, sensing, and diagnostics. IEEE J Sel Top Quantum Electron 22:1–14. https://doi.org/10.1109/JSTQE.2015.2478657

    Article  CAS  Google Scholar 

  112. D’Ambrosio MV, Bakalar M, Bennuru S et al (2015) Point-of-care quantification of blood-borne filarial parasites with a mobile phone microscope. Sci Transl Med 7:286re4. https://doi.org/10.1126/scitranslmed.aaa3480

    Article  PubMed  Google Scholar 

  113. Bates M, Zumla A (2015) Rapid infectious diseases diagnostics using smartphones. Ann Transl Med 3:215. https://doi.org/10.3978/j.issn.2305-5839.2015.07.07

    Article  PubMed  PubMed Central  Google Scholar 

  114. Tseng D, Mudanyali O, Oztoprak C et al (2010) Lensfree microscopy on a cellphone. Lab Chip 10:1787–1792. https://doi.org/10.1039/c003477k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Breslauer DN, Maamari RN, Switz NA et al (2009) Mobile phone based clinical microscopy for global health applications. PLoS One 4:e6320. https://doi.org/10.1371/journal.pone.0006320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Preechaburana P, Gonzalez MC, Suska A, Filippini D (2012) Surface Plasmon resonance chemical sensing on cell phones. Angew Chem 124:11753–11756. https://doi.org/10.1002/ange.201206804

    Article  Google Scholar 

  117. Lillehoj PB, Huang MC, Truong N, Ho CM (2013) Rapid electrochemical detection on a mobile phone. Lab Chip 13:2950–2955. https://doi.org/10.1039/c3lc50306b

    Article  CAS  PubMed  Google Scholar 

  118. Ame SM, Utzinger J, Bogoch II et al (2013) Mobile phone microscopy for the diagnosis of soil-transmitted helminth infections: a proof-of-concept study. Am J Trop Med Hyg 88:626–629. https://doi.org/10.4269/ajtmh.12-0742

    Article  PubMed  PubMed Central  Google Scholar 

  119. Wei Q, Qi H, Luo W et al (2013) Fluorescent imaging of single nanoparticles and viruses on a smart phone. ACS Nano 7:9147–9155. https://doi.org/10.1021/nn4037706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kadimisetty K, Song J, Doto AM et al (2018) Fully 3D printed integrated reactor array for point-of-care molecular diagnostics. Biosens Bioelectron 109:156–163. https://doi.org/10.1016/J.BIOS.2018.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Manzanares Palenzuela CL, Pumera M (2018) (Bio)analytical chemistry enabled by 3D printing: sensors and biosensors. TrAC Trends Anal Chem 103:110–118. https://doi.org/10.1016/J.TRAC.2018.03.016

    Article  CAS  Google Scholar 

  122. Lee DJ, Mai J, Huang TJ (2018) Microfluidic approaches for cell-based molecular diagnosis. Biomicrofluidics 12:051501. https://doi.org/10.1063/1.5030891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Erickson D, O’Dell D, Jiang L et al (2014) Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics. Lab Chip 14:3159. https://doi.org/10.1039/C4LC00142G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhu H, Sencan I, Wong J et al (2013) Cost-effective and rapid blood analysis on a cell-phone. Lab Chip 13:1282–1288. https://doi.org/10.1039/c3lc41408f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Vashist SK, Luong JHT (2018) Smartphone-based immunoassays. In: Handbook of immunoassay technologies. Academic Press, pp 433–453

    Chapter  Google Scholar 

  126. Coskun AF, Wong J, Khodadadi D et al (2013) A personalized food allergen testing platform on a cellphone. Lab Chip 13:636–640. https://doi.org/10.1039/c2lc41152k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. You DJ, Park TS, Yoon JY (2013) Cell-phone-based measurement of TSH using Mie scatter optimized lateral flow assays. Biosens Bioelectron 40:180–185. https://doi.org/10.1016/j.bios.2012.07.014

    Article  CAS  PubMed  Google Scholar 

  128. Guner H, Ozgur E, Kokturk G et al (2017) A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection. Sensors Actuators B Chem 239:571–577. https://doi.org/10.1016/j.snb.2016.08.061

    Article  CAS  Google Scholar 

  129. Zhang D, Liu Q (2016) Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens Bioelectron 75:273–284

    Article  CAS  Google Scholar 

  130. Roda A, Michelini E, Zangheri M et al (2016) Smartphone-based biosensors: a critical review and perspectives. Trends Anal Chem 79:317–325. https://doi.org/10.1016/j.trac.2015.10.019

    Article  CAS  Google Scholar 

  131. Quesada-González D, Merkoçi A (2017) Mobile phone-based biosensing: An emerging “diagnostic and communication” technology. Biosens Bioelectron 92:549–562. https://doi.org/10.1016/J.BIOS.2016.10.062

    Article  PubMed  Google Scholar 

  132. Rateni G, Dario P, Cavallo F (2017) Smartphone-based food diagnostic technologies: a review. Sensors (Switzerland) 17:1453

    Article  Google Scholar 

  133. Sim J-Z, Nguyen P-V, Lee H-K, Gan SK (2015) GelApp: mobile gel electrophoresis analyser. Nat Methods Appl Notes. https://doi.org/10.1038/an964

  134. Fogel I, Sagi D (1989) Gabor filters as texture discriminator. Biol Cybern 61:103–113. https://doi.org/10.1007/BF00204594

    Article  Google Scholar 

  135. Priye A, Wong S, Bi Y et al (2016) Lab-on-a-drone: toward pinpoint deployment of smartphone-enabled nucleic acid-based diagnostics for mobile health care. Anal Chem 88:4651–4660. https://doi.org/10.1021/acs.analchem.5b04153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Porr M, Marquard D, Stanislawski N et al (2019) smartLAB – working interactively in a digitalized laboratory environment. Chemie-Ingenieur-Technik 91:285–293. https://doi.org/10.1002/cite.201800090

    Article  CAS  Google Scholar 

  137. Iqbal MZ, Campbell A (2020) The emerging need for touchless interaction technologies. Interactions 27:51–52

    Article  Google Scholar 

  138. Abdelnasser H, Youssef M, Harras KA (2015) WiGest: a ubiquitous WiFi-based gesture recognition system. In: Proceedings – IEEE INFOCOM. IEEE, pp 1472–1480

    Google Scholar 

  139. Berman S, Stern H (2012) Sensors for gesture recognition systems. IEEE Trans Syst Man Cybern Part C Appl Rev 42:277–290. https://doi.org/10.1109/TSMCC.2011.2161077

    Article  Google Scholar 

  140. Google AI blog: on-device, real-time hand tracking with MediaPipe. https://ai.googleblog.com/2019/08/on-device-real-time-hand-tracking-with.html. Accessed 21 July 2021

  141. Alvarez-Lopez F, Maina MF, Saigí-Rubió F (2019) Use of commercial off-the-shelf devices for the detection of manual gestures in surgery: systematic literature review. J Med Internet Res 21:e11925. https://doi.org/10.2196/11925

    Article  PubMed  PubMed Central  Google Scholar 

  142. Bockhacker M, Syrek H, Elstermann Von Elster M et al (2020) Evaluating usability of a touchless image viewer in the operating room. Appl Clin Inform 11:88–94. https://doi.org/10.1055/s-0039-1701003

    Article  PubMed  PubMed Central  Google Scholar 

  143. Wojtczyk M, Panin G, Lenz C et al (2008) A vision based human robot interface for robotic in a biotech laboratory. In: Proceedings of the 4th ACM/IEEE international conference on human-robot interaction, HRI’09. Springer, pp 309–310

    Google Scholar 

  144. Jagodziński P, Wolski R (2015) Assessment of application technology of natural user interfaces in the creation of a virtual chemical laboratory. J Sci Educ Technol 24:16–28. https://doi.org/10.1007/S10956-014-9517-5

    Article  Google Scholar 

  145. Liu H (2016) Intelligent strategies for mobile robotics in laboratory automation. University of Rostock

    Google Scholar 

  146. Cohen MH, Giangola JP, Balogh J (2004) Voice user interface design. Addison-Wesley

    Google Scholar 

  147. Lu X, Li S, Fujimoto M (2020) Automatic speech recognition. Springer, London

    Google Scholar 

  148. Liddy E (2001) Natural language processing. In: Encyclopedia of library and information science2nd edn. Marcel Decker

    Google Scholar 

  149. Quesada W, Lautenbach B (2017) Programming voice interfaces. O'Reilly Media

    Google Scholar 

  150. Blackley SV, Huynh J, Wang L et al (2019) Speech recognition for clinical documentation from 1990 to 2018: a systematic review. J Am Med Inform Assoc 26:324–338. https://doi.org/10.1093/jamia/ocy179

    Article  PubMed  PubMed Central  Google Scholar 

  151. Sezgin E, Huang Y, Ramtekkar U, Lin S (2020) Readiness for voice assistants to support healthcare delivery during a health crisis and pandemic. NPJ Digit Med 3:1–4. https://doi.org/10.1038/s41746-020-00332-0

    Article  Google Scholar 

  152. Jadczyk T, Wojakowski W, Tendera M et al (2021) Artificial intelligence can improve patient management at the time of a pandemic: the role of voice technology. J Med Internet Res 23:e22959. https://doi.org/10.2196/22959

    Article  PubMed  PubMed Central  Google Scholar 

  153. Bérubé C, Schachner T, Keller R et al (2021) Voice-based conversational agents for the prevention and management of chronic and mental health conditions: systematic literature review. J Med Internet Res 23. https://doi.org/10.2196/25933

  154. Perkel JM (2020) Alexa, do science! Voice-activated assistants hit the lab bench. Nature 582:303–304. https://doi.org/10.1038/d41586-020-01683-0

    Article  CAS  PubMed  Google Scholar 

  155. Cambre J, Liu Y, Taylor RE, Kulkarni C (2019) Vitro: designing a voice assistant for the scientific lab workplace. In: DIS 2019 – proceedings of the 2019 ACM designing interactive systems conference. ACM, New York, pp 1531–1542

    Chapter  Google Scholar 

  156. Speech recognition and digital assistants in LIMS – LabVantage. https://www.labvantage.com/speech-recognition-and-digital-assistants-in-lims/. Accessed 23 July 2021

  157. QuantStudio 6 und 7 pro real-time-pcr-systeme. Thermo Fisher Scientific – DE. https://www.thermofisher.com/de/de/home/life-science/pcr/real-time-pcr/real-time-pcr-instruments/quantstudio-systems/models/quantstudio-6-7-pro.html. Accessed 23 July 2021

  158. myNEB®. NEB. https://international.neb.com/myneb/myneb. Accessed 23 July 2021

  159. Scientists are turning Alexa into an automated lab helper. MIT technology review. https://www.technologyreview.com/2017/05/03/68492/scientists-are-turning-alexa-into-an-automated-lab-helper/. Accessed 23 July 2021

  160. HelixAI – voice powered digital laboratory assistants for scientific laboratories. https://www.askhelix.io/. Accessed 23 July 2021

  161. LabTwin – voice and AI powered digital lab assistant. https://www.labtwin.com/. Accessed 23 July 2021

  162. LabVoice. About. https://www.labvoice.ai/about. Accessed 23 July 2021

  163. Elkins K, Chun J (2020) Can GPT-3 pass a writer’s turing test? J Cult Anal 1:17212. https://doi.org/10.22148/001c.17212

    Article  Google Scholar 

  164. Amazon does the unthinkable and sends Alexa recordings to the wrong person. https://www.forbes.com/sites/kevinmurnane/2018/12/20/amazon-does-the-unthinkable-and-sends-alexa-recordings-to-the-wrong-person/?sh=2255d08b3ca5. Accessed 28 July 2021

  165. Sutherland IE (1968) A head-mounted three dimensional display. In: Proceedings of the December 9–11, 1968, fall joint computer conference, part I on – AFIPS ‘68 (fall, part I). ACM Press, New York, p 757

    Chapter  Google Scholar 

  166. Ma JY, Choi JS (2007) The virtuality and reality of augmented reality. J Multimed 2:32–37. https://doi.org/10.4304/jmm.2.1.32-37

    Article  Google Scholar 

  167. Blyth C (2018) Immersive technologies and language learning. Foreign Lang Ann 51:225–232. https://doi.org/10.1111/flan.12327

    Article  Google Scholar 

  168. Reif R, Günthner WA (2009) Pick-by-vision: augmented reality supported order picking. Vis Comput 25:461–467. https://doi.org/10.1007/s00371-009-0348-y

    Article  Google Scholar 

  169. Henderson SJ, Feiner S (2009) Evaluating the benefits of augmented reality for task localization in maintenance of an armored personnel carrier turret. In: Science and technology proceedings – IEEE 2009 international symposium on mixed and augmented reality, ISMAR 2009. IEEE, pp 135–144

    Google Scholar 

  170. Huck-Fries V, Wiegand F, Klinker K et al (2017) Datenbrillen in der Wartung: evaluation verschiedener eingabemodalitäten bei servicetechnikern. Inform 2017:78464. https://doi.org/10.18420/in2017

    Article  Google Scholar 

  171. Cortazar B, Koydemir HC, Tseng D et al (2015) Quantification of plant chlorophyll content using Google Glass. Lab Chip 15:1708–1716. https://doi.org/10.1039/c4lc01279h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hu G, Chen L, Okerlund J, Shaer O (2015) Exploring the use of Google Glass in wet laboratories. Ext Abstr ACM CHI’15 Conf Hum Factors Comput Syst 2:2103–2108. https://doi.org/10.1145/2702613.2732794

    Article  Google Scholar 

  173. Austerjost J, Bargholz M, Porr M et al (2019) A flexible IT infrastructure for the integration of smartglasses into the brewing laboratory as a digital support for standard analysis workflows. Brew Sci 72. https://doi.org/10.23763/BrSc18-20austerjost

  174. Feng S, Caire R, Cortazar B et al (2014) Immunochromatographic diagnostic test analysis using google glass. ACS Nano 8:3069–3079. https://doi.org/10.1021/nn500614k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zhang YS, Busignani F, Ribas J et al (2016) Google glass-directed monitoring and control of microfluidic biosensors and actuators. Sci Rep 6:22237. https://doi.org/10.1038/srep22237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. O’Connor M, Deeks HM, Dawn E et al (2018) Sampling molecular conformations and dynamics in a multiuser virtual reality framework. Sci Adv 4:eaat2731. https://doi.org/10.1126/sciadv.aat2731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Patel KK, Patel SM (2016) Internet of things-IOT: definition, characteristics, architecture, enabling technologies, application & future challenges. Int J Eng Sci Comput 6(5):6122–6131

    Google Scholar 

  178. Santhanam G, Ryu SI, Yu BM et al (2006) A high-performance brain-computer interface. Nature 442:195–198. https://doi.org/10.1038/nature04968

    Article  CAS  PubMed  Google Scholar 

  179. Perry TS (2020) Augmented reality in a contact lens: it’s the real deal. https://spectrum.ieee.org/ar-in-a-contact-lens-its-the-real-deal. Accessed 12 Oct 2021

Download references

Acknowledgements

We gratefully acknowledge Janina Dürr for figure preparation and proof-reading the manuscript.

Financial Support

S.R. is supported by the German Research Foundation (DFG SFB 1002 INF).

T.M. is supported by the DZHK (German Center for Cardiovascular Research) and the German Federal Ministry for Science and Education (IndiHEART; 161L0250A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Austerjost .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Söldner, R., Rheinländer, S., Meyer, T., Olszowy, M., Austerjost, J. (2022). Human–Device Interaction in the Life Science Laboratory. In: Beutel, S., Lenk, F. (eds) Smart Biolabs of the Future. Advances in Biochemical Engineering/Biotechnology, vol 182. Springer, Cham. https://doi.org/10.1007/10_2021_183

Download citation

Publish with us

Policies and ethics

Navigation