The Role of Carotenoids in Energy Quenching

  • Chapter
Photosystem II

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 22))

Summary

Photoprotection remains one of the most challenging and complex areas for research in photosynthesis. Co** with a wide range of adverse environmental conditions, especially full sunlight, is central to plant survival in nature, and understanding mechanisms of light acclimation is increasingly important in crop improvement. Excess light and other environmental stresses can result in prolonged lifetimes of excited state chlorophylls and enhanced triplet state yields that, left unchecked, markedly increase the rate of formation of reactive oxygen species such as H2O2, singlet oxygen (1O2*) and superoxide (O2). Reactive oxygen species cause photo-oxidative damage such as bleaching and peroxidation to the photosystems and the whole plant. Carotenoids afford protection against photo-oxidative damage in complementary ways by stabilizing the pigment-protein complexes and quenching of excited state chlorophylls and reactive oxygen species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 501.83
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 632.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adir N, Zer H, Schochat S and Ohad I (2003) Photoinhibition. Photosynth Res 76: 343–370

    Article  CAS  PubMed  Google Scholar 

  • Al-Babili S, Lintig JV, Haubruck H and Beyer P (1996) A novel, soluble form of phytoene desaturase from Narcissus pseudonarcissus chromoplasts is Hsp70-complexed and competent for flavinylation, membrane association and enzymatic activation. Plant J 9: 601–612

    Article  CAS  PubMed  Google Scholar 

  • Al-Babili S, Hugueney P, Schledz M, Welsch R, Frohnmeyer H, Laule O and Beyer P (2000) Identification of a novel gene coding for neoxanthin synthase from Solanum tuberosum. FEBS Lett 485: 168–172

    Article  CAS  PubMed  Google Scholar 

  • Alfonso M, Montoya G, Cases R, Rodriguez R and Picorel R (1994) Core antenna complexes, CP43 andCP47, of higher plant Photosy stem II: Spectral properties, pigment stoichiometry, and amino acid composition. Biochemistry 33: 10494–10500

    Article  CAS  PubMed  Google Scholar 

  • Anderson JM and Chow WS (2002) Structural and functional dynamics of plant Photosystem II. Philos Trans R Soc Lond Ser B-Biol Sci 357: 1421–1430

    CAS  Google Scholar 

  • Anderson JM, Chow WS and Park YI (1995) The grand design of photosynthesis: Acclimation of the photosynthetic apparatus to environmental cues. Photosynth Res 46: 129–139

    Article  CAS  Google Scholar 

  • Andersson J, Walters RG, Horton P and Jansson S (2001) Antisense inhibition of the photosynthetic antenna proteins CP29 and CP26: Implications for the mechanism of protective energy dissipation. Plant Cell 13: 1193–1204

    Article  CAS  PubMed  Google Scholar 

  • Aspinall-O’Dea M, Wentworth M, Pascal A, Robert B, Ruban A and Horton P (2002) In vitro reconstitution of the activated zeaxanthin state associated with energy dissipation in plants. Proc Natl Acad Sci USA 99: 16331–16335

    CAS  PubMed  Google Scholar 

  • Ball L, Accotto G-P, Bechtold U, Creissen G, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S, Mullineaux P (2004) An Arabidopsis mutant with raised ASCORBATE PEROXIDASE2 expression reveals glutathione as a direct modulator of stress responsive gene expression. Plant Cell 16:2448–2462

    Article  CAS  PubMed  Google Scholar 

  • Bassi R and Caffarri S (2000) Lhc proteins and the regulation of photosynthetic light harvesting function by xanthophylls. Photosynth Res 64: 243–256

    Article  CAS  PubMed  Google Scholar 

  • Bassi R, Pineau B, Dainese P and Marquardt J (1993) Carotenoid-binding proteins of Photosystem II. Eur J Biochem 212: 297–303

    Article  CAS  PubMed  Google Scholar 

  • Bassi R, Croce R, Cugini D and Sandona D (1999) Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites. Proc Natl Acad Sci USA 96: 10056–10061

    Article  CAS  PubMed  Google Scholar 

  • Beddard RS and Tretheway KR (1977) Quenching of chlorophyll fluorescence by β-carotene. Nature 267: 373–374

    Article  CAS  Google Scholar 

  • Bergantino E, Segalla A, Brunetta A, Teardo E, Rigoni F, Giacometti GM and Szabo I (2003) Light-and pH-dependent structural changes in the PsbS subunit of Photosystem II. Proc Natl Acad Sci USA 100: 15265–15270

    Article  CAS  PubMed  Google Scholar 

  • Beyer P and Kleinig H (1990) On the desaturation and cyclization reactions of carotenes in chromoplast membranes. In: Krinksy N, Mathews-Roth M and Taylor R (eds) Carotenoids: Chemistry and Biology, pp 195–206. Plenum Press, New York

    Google Scholar 

  • Bishop NI (1996) The beta,epsilon-carotenoid, lutein, is specifically required for the formation of the oligomeric forms of the light harvesting complex in the green alga, Scenedesmus obliquus. J Photochem Photobiol B Biol 36: 279–283

    CAS  Google Scholar 

  • Bishop NI, Urbig T and Senger H (1995) Complete separation of the beta,epsilon-and beta,beta-carotenoid biosynthetic pathways by a unique mutation of the lycopene cyclase in the green alga, Scenedesmus obliquus. FEBS Lett 367: 158–162

    Article  CAS  PubMed  Google Scholar 

  • Boucher F, Vanderrest, M and Gingras, G (1977) Structure and function of carotenoids in the photoreaction center from Rhodospirillum rubrum. Biochim Biophys Acta 461: 339–357

    CAS  PubMed  Google Scholar 

  • Bouvier F, Keller Y, d’Harlingue A and Camara B (1998) Xanthophyll biosynthesis: molecular and functional characterization of carotenoid hydroxylases from pepper fruits (Capsicum annuum L.). Biochim Biophys Acta 1391: 320–328

    CAS  PubMed  Google Scholar 

  • Bouvier F, d’Harlingue A, Backhaus R, Kumagai M and Camara B (2000) Identification of a neoxanthin synthase as a carotenoid cyclase paralog. Eur J Biochem 267: 6346–6352

    Article  CAS  PubMed  Google Scholar 

  • Bramley PM (1993) Inhibition of carotenoid biosynthesis. In: Young AJ and Britton G (eds) Carotenoids in Photosynthesis, pp 127–159. Chapman and Hall, London

    Google Scholar 

  • Briantais JM, Dacosta J, Goulas Y, Ducruet JM and Moya I (1996) Heat stress induces in leaves an increase of the minimum level of chlorophyll fluorescence, F-o: A time-resolved analysis. Photosynth Res 48: 189–196

    Article  CAS  Google Scholar 

  • Bungard RA, Ruban AV, Hibberd JM, Press MC, Horton P and Scholes JD (1999) Unusual carotenoid composition and a new type of xanthophyll cycle in plants. Proc Natl Acad Sci USA 96:1135–1139

    Article  CAS  PubMed  Google Scholar 

  • Caffarri S, Croce R, Breton J and Bassi R (2001) The major antenna complex of Photosystem II has a xanthophyll binding site not involved in light harvesting. J Biol Chem 276: 35924–35933

    Article  CAS  PubMed  Google Scholar 

  • Cardoso SLN, Nicodem, DE, Moore TA, Moore AL and Gust D (1996) Synthesis and fluorescence quenching studies of a series of carotenoporphyrins with carotenoids of various lengths. J Brazil Chem Soc 7: 19–30

    CAS  Google Scholar 

  • Carol P and Kuntz M (2001) A plastid terminal oxidase comes to light: Implications for carotenoid biosynthesis and chlororespiration. Trends Plant Sci 6: 31–36

    Article  CAS  PubMed  Google Scholar 

  • Chow WS (1994) Photoprotection and photoinhibitory damage. In: Bittar EE (ed) Molecular Processes of Photosynthesis, Vol 10, pp 151–196. JAI Press, Greenwich

    Google Scholar 

  • Chunaev AS, Mirnaya ON, Maslov VG and Boschetti A (1991) Chlorophyll b-and loroxanthin-deficient mutants of Chlamydomonas reinhardtii. Photosynthetica 25: 291–301

    CAS  Google Scholar 

  • Cogdell RJ, Hipkins MF, MacDonald W and Truscott TG (1981) Energy transfer between the carotenoid and bacteriochlorophy 11 within the B800–850 light-harvesting pigment-protein complex of Rps. sphaeroides. Biochim Biophys Acta 634: 191–202

    CAS  PubMed  Google Scholar 

  • Croce R, Remelli R, Varotto C, Breton J and Bassi R (1999) The neoxanthin binding site of the major light harvesting complex (LHCII) from higher plants. FEBS Lett 456: 1–6

    Article  CAS  PubMed  Google Scholar 

  • Croce R, Canino G, Ros F and Bassi R (2002) Chromophore organization in the higher-plant Photosystem II antenna protein CP26. Biochemistry 41: 7334–7343

    Article  CAS  PubMed  Google Scholar 

  • Cunningham FJ and Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Ann Rev Plant Physiol Mol Biol 49: 557–583

    Article  CAS  Google Scholar 

  • Cunningham FX, Jr., Sun Z, Chamovitz D, Hirschberg J and Gantt E (1994) Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp strain PCC7942. Plant Cell 6: 1107–1121

    CAS  PubMed  Google Scholar 

  • Davison PA, Hunter CN and Horton P (2002) Overexpression of beta-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418: 203–206

    Article  CAS  PubMed  Google Scholar 

  • Demmig B, Winter K, Kruger A and Czygan F-C (1987) Photoinhibition and zeaxanthin formation in intact leaves. Plant Physiol 84: 218–224

    CAS  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020: 1–24

    CAS  Google Scholar 

  • Demmig-Adams B (2003) Linking the xanthophyll cycle with thermal energy dissipation. Photosynth Res 76: 73–80

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B and Adams III WW (1992) Photoprotection and other responses of plants to high light stress. Ann Rev Plant Physiol Plant Mol Biol 43: 599–626

    CAS  Google Scholar 

  • Demmig-Adams B and Adams III WW (1993) The xanthophylls cycle. In: Young AJ and Britton G (eds) Carotenoids in Photosynthesis, pp 206–252. Chapman and Hall, London

    Google Scholar 

  • Demmig-Adams B and Adams III WW (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1: 21–26

    Google Scholar 

  • Demmig-Adams B, Adams III WW, Barker DH, Logan BA, Bowling DR and Verhoeven AS (1996) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant 98: 253–264

    Article  CAS  Google Scholar 

  • Dobrikova A, Morgan RM, Ivanov AG, Apostolova E, Petkanchin I, Huner NPA and Taneva SG (2000) Electric properties of thylakoid membranes from pea mutants with modified carotenoid and chlorophyll-protein complex composition. Photosynth Res 65: 165–174

    Article  CAS  PubMed  Google Scholar 

  • Dominici P, Caffarri S, Armenante F, Ceoldo S, Crimi M and Bassi R (2002) Biochemical properties of the PsbS subunit of Photosystem II either purified from chloroplast or recombinant. J Biol Chem 277: 22750–22758

    Article  CAS  PubMed  Google Scholar 

  • Dutton HJ, Manning WM and Duggar BM (1943) Chl fluorescence and energy transfer in the diatom Nitzscia closterium. J Phys Chem 47: 308–317

    Article  CAS  Google Scholar 

  • Elrad D, Niyogi KK and Grossman AR (2002) A major light-harvesting polypeptide of Photosystem II functions in thermal dissipation. Plant Cell 14: 1801–1816

    Article  CAS  PubMed  Google Scholar 

  • Falbel TG, Staehelin LA and Adams III WW (1994) Analysis of xanthophyll cycle carotenoids and chlorophyll fluorescence in light intensity-dependent chlorophyll-deficient mutants of wheat and barley. Photosynth Res 42: 191–202

    Article  CAS  Google Scholar 

  • Farber A and Jahns P (1998) The xanthophyll cycle of higher plants: Influence of antenna size and membrane organization. Biochim Biophys Acta 1363: 47–58

    CAS  PubMed  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303: 1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Foote CS (1968) Mechanisms of photosensitized oxidation. Science 162:963

    CAS  PubMed  Google Scholar 

  • Foote CS and Denny RW (1970) Chemistry of singlet oxygen. X. Carotenoid quenching parallels biological protection. J Am Chem Soc 92: 5216

    CAS  PubMed  Google Scholar 

  • Formaggio E, Cinque G and Bassi R (2001) Functional architecture of the major light-harvesting complex from higher plants. J Mol Biol 314: 1157–1166

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH (2001) Prospects for enhancement of the soluble antioxidants, ascorbate and glutathione. Biofactors 15: 75–78

    CAS  PubMed  Google Scholar 

  • Foyer CH and Harbinson J (1999) Relationships between antioxidant metabolism and carotenoids in the regulation of photosynthesis. In: Frank HA, Young AJ, Britton G and Cogdell RJ (eds) The Photochemistry of Carotenoids, pp 305–325. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Frackowiak D, Zelent B, Malak H, Cegielski R, Goc J, Niedbalska M, Ptak A. (1995) Interactions between chlorophyll-a and beta-carotene in nematic liquid-crystals. Biophys Chem 54: 95–107

    Article  CAS  PubMed  Google Scholar 

  • Frank HA and Brudvig GW (2004) Redox function of carotenoids in photosynthesis. Biochemistry 43: 8607–8615

    Article  CAS  PubMed  Google Scholar 

  • Frank HA and Cogdell RJ (1993) Photochemistry and function of carotenoids in photosynthesis. In: Young AJ and Britton G (eds) Carotenoids in Photosynthesis, pp 253–326. Chapman and Hall, London

    Google Scholar 

  • Frank HA, Cua A, Chynwat V, Young A, Gosztola D and Wasielewski MR (1994) Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth Res 41: 389–395

    Article  CAS  Google Scholar 

  • Frank HA, Cua A, Chynwat V, Young AJ, Zhu Y and Blanken-ship RE (1995) Quenching of chlorophyll excited states by carotenoids. In: Mathis P (ed) Photosynthesis: From Light to Biosphere, Vol. IV, pp 3–7. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Frank HA, Kievit O, Brudvig GW, Kong J, Lu Z, Lvov YM, Bautista JA and Rusling JF (1999) Direct electrochemistry of redox sites in photosynthetic reaction centers. Biophys J 76: A256–A256

    Google Scholar 

  • Frank HA, Bautista JA, Josue, JS, and Young, AJ (2000) Mechanism of nonphotochemical quenching in green plants: Energies of the lowest excited singlet states of violaxanthin and zeaxanthin. Biochemistry 39: 2831–2837

    CAS  PubMed  Google Scholar 

  • Funk C, Adamska I, Green BR, Andersson B and Renger G (1995) The nuclear-encoded chlorophyll-binding Photosy stem II-S protein is stable in the absence of pigments. J Biol Chem 270:30141–30147

    CAS  PubMed  Google Scholar 

  • Gastaldelli M, Canino G, Croce R and Bassi R (2003) Xanthophyll binding sites of the CP29 (Lhcb4) subunit of higher plant Photosy stem II investigated by domain swap** and mutation analysis. J Biol Chem 278: 19190–19198

    Article  CAS  PubMed  Google Scholar 

  • Genty B, Goulas Y, Dimon B, Peltier G, Briantais JM and Moya I (1992) Modulation of efficiency of primary conversion in leaves. Photosynth Res 34: 106–106

    Google Scholar 

  • Gilmore A (2001) Xanthophyll cycle-dependent nonphotochemical quenching in Photosystem II: Mechanistic insights gained from Arabidopsis thaliana L. mutants that lack violaxanthin deepoxidase activity and/or lutein. Photosynth Res 67: 89–101

    Article  CAS  PubMed  Google Scholar 

  • Gilmore AM and Yamamoto HY(1991) Zeaxanthin formation and energy-dependent fluorescence quenching in pea chloroplasts under artificially mediated linear and cyclic electron transport. Plant Physiol 96: 635–643

    CAS  Google Scholar 

  • Gilmore A and Govindjee (1999) How higher plants respond to excess light: Energy dissipation in photosystem. In: Singhal G, Renger G, Sopory S, Irrgang K and Govindjee (eds) Concepts in Photobiology: Photosynthesis and Photomorphogenesis, pp 513–548. Narosa Publishing House, New Delhi

    Google Scholar 

  • Gilmore AM, Hazlett TL and Govindjee (1995) Xanthophyll cycle-dependent quenching of Photosystem II chlorophyll a fluorescence: Formation of a quenching complex with a short fluorescence lifetime. Proc Natl Acad Sci USA 92: 2273–2277

    CAS  PubMed  Google Scholar 

  • Gilmore AM, Hazlett TL, Debrunner PG and Govindjee (1996a) Comparative time-resolved Photosystem II chlorophyll a fluorescence analyses reveal distinctive differences between photoinhibitory reaction center damage and xanthophyll cycle-dependent energy dissipation. Photochem Photobiol 64:552–563

    CAS  PubMed  Google Scholar 

  • Gilmore AM, Hazlett TL, Debrunner PG, Govindjee (1996b) Photosystem II chlorophyll a fluorescence lifetimes and intensity are independent of the antenna size differences barley wild-type and chlorina mutants: Photochemical quenching and xanthophyll cycle-dependent nonphotochemical quenching of fluorescence. Photosynth Res 48: 171–187

    Article  CAS  Google Scholar 

  • Gilmore AM, Shinkarev VP, Hazlett TL and Govindjee (1998) Quantitative analysis of the effects of intrathylakoid pH and xanthophyll cycle pigments on chlorophyll a fluorescence lifetime distributions and intensity in thylakoids. Biochemistry 37:13582–13593

    Article  CAS  PubMed  Google Scholar 

  • Giuffra E, Cugini D, Croce R and Bassi R (1996) Reconstitution and pigment-binding properties of recombinant CP29. Eur J Biochem 238: 112–120

    Article  CAS  PubMed  Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky — Chlorophyll a fluorescence. Austr J Plant Physiol 22: 131–160

    CAS  Google Scholar 

  • Govindjee (1999) On the requirement of minimum number of four versus eight quanta of light for the evolution of one molecule of oxygen in photosynthesis: A historical note. Photosynth Res 59: 249–254

    Article  CAS  Google Scholar 

  • Green BR and Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Ann Rev Plant Physiol Mol Biol 47: 685–714

    Article  CAS  Google Scholar 

  • Griffiths M, Sistrom WR, Cohen-Bazire G and Stanier RY (1955) Function of carotenoids in photosynthesis. Nature 176:1211–1214

    CAS  PubMed  Google Scholar 

  • Groot ML, Peterman EJG, Vanstokkum IHM, Dekker JP and van Grondelle R (1995) Triplet and fluorescing states of the Cp47 antenna complex of photosystem-II studied as a function of temperature. Biophys J 68: 281–290

    CAS  PubMed  Google Scholar 

  • Gruszecki W (1999) Carotenoid in membranes. In: Frank H, Young A, Britton G and Cogdell R (eds) The Photochemistry of Carotenoids, pp 363–379. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gruszecki WI, Grudzinski W, Banaszek-Glos A, Matula M, Kernen P, Krupa Z and Sielewiesiuk J (1999) Xanthophyll pigments in light-harvesting complex II in monomolecular layers: Localisation, energy transfer and orientation. Biochim Biophys Acta 1412: 173–183

    CAS  PubMed  Google Scholar 

  • Gust DM, Moore TA, Moore AL, Devadoss C, Liddell PA, Heman R, Nieman RA, Demanche LJ, Degraziano JM and Gouni I (1992) Triplet and singlet energy transfer in carotene-porphyrin dyads: Role of the linkage bonds. J Am Chem Soc 114:3590–3603

    Article  CAS  Google Scholar 

  • Hanley J, Deligiannakis Y, Pascal A, Faller P and Rutherford AW (1999) Carotenoid oxidation in Photosystem II. Biochemistry 38:8189–8195

    Article  CAS  PubMed  Google Scholar 

  • Havaux M (1998) Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci 3: 147–151

    Google Scholar 

  • Havaux M and Niyogi KK (1999) The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci USA 96: 8762–8767

    Article  CAS  PubMed  Google Scholar 

  • Havaux M, Dal’Osto L, Cuine S, Giuliano G and Bassi R (2004) The effect of zeaxanthin as the only xanthophyll on the structure and function of the photosynthetic apparatus in Arabidopsis thaliana. J Biol Chem 279: 13878–13888

    Article  CAS  PubMed  Google Scholar 

  • Heinze I, Pfuendel E, Huehn M and Dau H (1997) Assembly of light harvesting complexes II (LHC-II) in the absence of lutein. A study on the alpha-carotenoid-free mutant C-2A’-34 of the green alga Scenedesmus obliquus. Biochim Biophys Actal 320: 188–194

    Google Scholar 

  • Herrin DL, Battey JF, Greer K and Schmidt GW (1992) Regulation of chlorophyll apoprotein expression and accumulation. Requirements for carotenoids and chlorophyll. J Biol Chem 267:8260–8269

    CAS  PubMed  Google Scholar 

  • Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4: 210–218

    Article  CAS  PubMed  Google Scholar 

  • Hobe S, Prytulla S, Kuhlbrandt W and Paulsen H (1994) Trimerization and crystallization of reconstituted light-harvesting chlorophyll a/b complex. EMBO J 13: 3423–3429

    CAS  PubMed  Google Scholar 

  • Holt NE, Fleming GR and Niyogi KK (2004) Toward an understanding of the mechanism of nonphotochemical quenching in green plants. Biochemistry 43: 8281–8289

    Article  CAS  PubMed  Google Scholar 

  • Holt NE, Zigmantas, Valkunas L, Li X-P, Niyogi KK and Fleming GR (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307: 433–436

    Article  CAS  PubMed  Google Scholar 

  • Hoober JK and Eggink LL (1999) Assembly of light-harvesting complex II and biogenesis of thylakoid membranes in chloroplasts. Photosynth Res 61: 197–215

    CAS  Google Scholar 

  • Horton P, Ruban AV and Walters RG (1996) Regulation of light harvesting in green plants. Ann Rev Plant Physiol Plant Mol Biol 47: 655–684

    CAS  Google Scholar 

  • Hughes DA (2001) Dietary carotenoids and human immune function. Nutrition 17: 823–827

    Article  CAS  PubMed  Google Scholar 

  • Isaacson T, Ronen G, Zamir D and Hirschberg J (2002) Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell 14:333–342

    Article  CAS  PubMed  Google Scholar 

  • Jansson S (1994) The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta 1184: 1–19

    CAS  PubMed  Google Scholar 

  • Jansson S (1999) A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci 4: 236–240

    Article  PubMed  Google Scholar 

  • ** ES, Polle JEW and Melis A (2001) Involvement of zeaxanthin and of the Cbr protein in the repair of Photosystem II from photoinhibition in the green alga Dunaliella salina. Biochim Biophys Acta 1506: 244–259

    CAS  PubMed  Google Scholar 

  • Jordan P, Fromme P, Witt H, Klukas O, Saenger W and Krauß BN (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5 angstrom resolution. Nature 411: 909–917

    Article  CAS  PubMed  Google Scholar 

  • Josue JS and Frank HA (2002) Direct determination of the S-l excited-state energies of xanthophylls by low-temperature fluorescence spectroscopy. J Phys Chem A 106: 4815–4824

    Article  CAS  Google Scholar 

  • Kamiya N and Shen J-R (2003) Crystal structure of oxygen-evolving Photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution. Proc Natl Acad Sci USA 100: 98–103

    Article  CAS  PubMed  Google Scholar 

  • Knox J and Dodge A (1985) Singlet oxygen and plants. Phytochemistry 24: 889–89

    Article  CAS  Google Scholar 

  • Koornneef M, Jorna ML, Brinkhorst van der Swan DLC and Karssen CM (1982) The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) Heynh. Theor Appl Genet 61: 385–393

    CAS  Google Scholar 

  • Kramer DM, Sacksteder CA and Cruz JA (1999) How acidic is the lumen? Photosynth Res 60: 151–163

    Article  CAS  Google Scholar 

  • Kramer H and Mathis P (1980) Quantum yield and rate of formation of the carotenoid triplet state in photosynthetic structures. Biochim Biophys Acta 593: 319–329

    CAS  PubMed  Google Scholar 

  • Krause GH and Weis E (1991) Chlorophyll fluorescence and photosynthesis: The basics. Ann Rev Plant Physiol Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Krinsky NI (1971) Function of carotenoids. In: Isler O, Guttman G and Solms U (eds) Carotenoids, pp 669–716. Birkhauser Verlag, Basel

    Google Scholar 

  • Krueger BP, Scholes GD and Fleming GR (1998) Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J Phys ChemB 102:5378–5386

    CAS  Google Scholar 

  • Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621

    Article  PubMed  Google Scholar 

  • Kühlein C, Agren J and Jansson S (2002) Rapid regulation of light harvesting and plant fitness in the field. Science 297: 91–93

    Google Scholar 

  • Kumagai MH, Keller Y, Bouvier F, Clary D and Camara B (1998) Functional integration of non-native carotenoids into chloroplasts by viral-derived expression of capsanthin-capsorubin synthase in Nicotiana benthamiana. Plant J 14: 305–315

    Article  CAS  PubMed  Google Scholar 

  • Landrum JT and Bone RA (2001) Lutein, zeaxanthin, and the macular pigment. Arch Biochem and Biophys 385: 28–40

    Article  CAS  Google Scholar 

  • Li X-P, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S and Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403: 391–395

    CAS  PubMed  Google Scholar 

  • Li X-P, Phippard A, Pasari J and Niyogi KK (2002a) Structurefunction analysis of Photosystem II subunit S (PsbS) in vivo. Funct Plant Biol 29: 1131–1139

    Article  Google Scholar 

  • Li X-P, Gilmore AM and Niyogi KK (2002b) Molecular and global time-resolved analysis of a PsbS gene dosage effect on pH-and xanthophyll cycle-dependent nonphotochemical quenching in Photosystem II. J Biol Chem 277: 33590–33597

    CAS  PubMed  Google Scholar 

  • Li X-P, Muller-Moule P, Gilmore AM and Niyogi KK (2002c) PsbS-dependent enhancement of feedback de-excitation protects Photosystem II from photoinhibition. Proc Natl Acad Sci USA 99: 15222–15227

    CAS  PubMed  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang TY, Zhang J, Gul L, An X and Chang WR(2004) Crystal structure of spinach major light-harvesting complex at 2.72 A resolution. Nature 428: 287–292

    Article  CAS  PubMed  Google Scholar 

  • Lokstein H, Tian L, Polle JEW, DellaPenna D (2002) Xanthophyll biosynthetic mutants of Arabidopsis thaliana: Altered nonphotochemical quenching of chlorophyll fluorescence is due to changes in Photosystem II antenna size and stability. Biochim Biophys Acta 1553: 309–319

    CAS  PubMed  Google Scholar 

  • Ma YZ, Holt NE, Li X-P, Niyogi KK and Fleming GR (2003) Evidence for direct carotenoid involvement in the regulation of photosynthetic light harvesting. Proc Natl Acad Sci USA 100:4377–4382

    CAS  PubMed  Google Scholar 

  • Marin E, Nussaume L, Quesada A, Gonneau M, Sotta B, Hugueney P, Frey A and Marion Poll A (1996) Molecular identification of zeaxanthin epoxidase of Nictiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J 15: 2331–2342

    CAS  PubMed  Google Scholar 

  • Matsubara S, Gilmore AM and Osmond CB (2001) Diurnal and acclimatory responses of violaxanthin and lutein epoxide in the Australian mistletoe Amyema miquelii. Aust J Plant Physiol 28:793–800

    CAS  Google Scholar 

  • Maxwell K and Johnson GN (2000) Chlorophyll fluorescence — apractical guide. J Exp Bot 51: 659–668

    Article  CAS  PubMed  Google Scholar 

  • Milborrow BV, Swift IE and Netting AG (1982) The stereochemistry of hydroxylation of the carotenoid lutein in Calendula officinalis. Phytochemistry 21: 2853–2857

    CAS  Google Scholar 

  • Misawa N, Masamoto K, Hori T, Ohtani T, Boger P and Sandmann G (1994) Expression of an Erwinia phytoene desaturase gene not only confers multiple resistance to herbicides interfering with carotenoid biosynthesis but also alters xanthophyll metabolism in transgenic plants. Plant J 6: 481–489

    Article  CAS  Google Scholar 

  • Morosinotto T, Baronio R and Bassi R (2002) Dynamics of chromophore binding to Lhc proteins in vivo and in vitro during operation of the xanthophyll cycle. J Biol Chem 277: 36913–36920

    CAS  PubMed  Google Scholar 

  • Morosinotto T, Caffarri S, Dall’Osto L and Bassi R (2003) Mechanistic aspects of the xanthophyll dynamics in higher plant thylakoids. Physiol Plant 119: 347–354

    Article  CAS  Google Scholar 

  • Müller P, Li X-P and Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    PubMed  Google Scholar 

  • Muller-Moule P, Conklin PL and Niyogi KK (2002) Ascorbat deficiency can limit violaxanthin de-epoxidase activity in vivo. Plant Physiol 128: 970–977

    Article  CAS  PubMed  Google Scholar 

  • Nield J, Orlova EV, Morris EP, Gowen B, van Heel M and Barber J (2000) 3D map of the plant Photosystem II supercomplex obtained by cryoelectron microscopy and single particle analysis. Nature Structural Biol 7: 44–47

    CAS  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: Genetic and molecular approaches. Ann Rev Plant Physiol Mol Biol 50: 333–359

    Article  CAS  Google Scholar 

  • Niyogi KK, Björkman O and Grossman AR (1997a) Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. Plant Cell 9: 1369–1380

    Article  CAS  PubMed  Google Scholar 

  • Niyogi KK, Björkman O and Grossman AR (1997b) The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci USA 94: 14162–14167

    Article  PubMed  Google Scholar 

  • Niyogi KK, Grossman AR and Björkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134

    Article  CAS  PubMed  Google Scholar 

  • Niyogi KK, Shih C, Chow WS, Pogson BJ, DellaPenna D and Björkman O (2001) Photoprotection in a zeaxanthin-and lutein-deficient double mutant of Arabidopsis. Photosynth Res 67: 139–145

    Article  CAS  PubMed  Google Scholar 

  • Noctor G and Foyer CH (1998) Ascorbate and glutathione: Kee** active oxygen under control. Ann Rev Plant Physiol Mol Biol 49: 249–279

    Article  CAS  Google Scholar 

  • Norris SR, Barrette TR and DellaPenna D (1995) Genetic dissection of carotenoid synthesis in Arabidopsis defines plastoquinones as an essential component of phytoene desaturation. Plant Cell 7: 2139–2149

    Article  CAS  PubMed  Google Scholar 

  • Nussberger S, Dorr K, Wang D and Kühlbrandt W (1993) Lipid-protein interactions in crystals of plant light-harvesting complex. J Mol Biol 234

    Google Scholar 

  • Osmond CB, Kramer D and Luttge U (1999) Reversible, water stress-induced non-uniform chlorophyll fluorescence quenching in wilting leaves of Potentilla reptans may not be due to patchy stomatal responses. Plant Biol 1:618–624

    Google Scholar 

  • Park H, Kreunen S, Cuttriss A, DellaPenna D and Pogson B (2002) Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell 14: 321–332

    Article  CAS  PubMed  Google Scholar 

  • Paulsen H (1999) Carotenoids and the assembly of light-harvesting complexes. In: Frank H, Young A, Britton G and Cogdell R (eds) The Photochemistry of Carotenoids, pp 123–135. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Pearcy RW and Yang W (1998) The functional morphology of light capture and carbon gain in the Redwood forest understorey plant Adenocaulon bicolor Hook. Functional Ecology 12: 543–552

    Article  Google Scholar 

  • Peter GF and Thornber JP (1991a) Electrophoretic procedures for fractionation of photosystems I and II pigment-proteins of higher plants and for determination of their subunit composition. Meth Plant Biochem 5: 195–210

    CAS  Google Scholar 

  • Peter GF and Thornber JP (1991b) Biochemical composition and organization of higher plant Photosystem II light-harvesting pigment-proteins. J Biol Chem 266: 16745–16754

    CAS  PubMed  Google Scholar 

  • Pfündel E and Bilger W (1994) Regulation and possible function of the violaxanthin cycle. Photosynth Res 42: 89–109

    Article  Google Scholar 

  • Pfündel E and Dilley RE (1993) The pH dependence of violaxanthin deepoxidation in isolated pea chloroplasts. Plant Physiol 101:65–71

    PubMed  Google Scholar 

  • Phillip D, Hobe S, Paulsen H, Molnar P, Hashimoto H and Young AJ (2002) The binding of xanthophylls to the bulk light-harvesting complex of Photosystem II of higher plants — A specific requirement for carotenoids with a 3-hydroxy-beta-end group. J Biol Chem 277: 25160–25169

    Article  CAS  PubMed  Google Scholar 

  • Plumley FG and Schmidt GW (1987) Reconstitution of chlorophyll a/b light-harvesting complexes: Xanthophyll-dependent assembly and energy transfer. Proc Natl Acad Sci USA 84: 146–150

    CAS  Google Scholar 

  • Plumley F and Schmidt G (1995) Light-harvesting chlorophyll alb complexes: Interdependent pigment synthesis and protein assembly. Plant Cell 7: 689–704

    Article  CAS  PubMed  Google Scholar 

  • Pogson BJ and Rissler HM (2000) Genetic manipulation of carotenoid biosynthesis and photoprotection. Philos Trans Roy Soc Lond B 355: 1395–1403

    CAS  Google Scholar 

  • Pogson B, McDonald K, Truong M, Britton G and DellaPenna D (1996) Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. Plant Cell 8: 1627–1639

    Article  CAS  PubMed  Google Scholar 

  • Pogson BJ, Niyogi KK, Björkman O and DellaPenna D (1998) Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proc Natl Acad Sci USA 95: 13324–13329

    Article  CAS  PubMed  Google Scholar 

  • Polivka T, Herek J, Zigmantas D, Akerlund H and Sundström V (1999) Direct observation of the (forbidden) SI state in carotenoids. Proc Natl Acad Sci USA 96: 4914–4917

    Article  CAS  PubMed  Google Scholar 

  • Polivka T, Zigmantas D, Sundstrom V, Formaggio E, Cinque G and Bassi R (2002) Carotenoid S-l state in a recombinant light-harvesting complex of Photosystem II. Biochemistry 41:439–450

    Article  CAS  PubMed  Google Scholar 

  • Polle JEW, Niyogi KK and Melis A (2001) Absence of lutein, violaxanthin and neoxanthin affects the functional chlorophyll antenna size of photosy stem-II but not that of photosystem-I in the green alga Chlamydomonas reinhardtii. Plant Cell Physiol 42: 482–491

    Article  CAS  PubMed  Google Scholar 

  • Redmond TM, Gentleman S, Duncan T, Yu S, Wiggert B, Gantt E and Cunningham FX (2001) Identification, expression, and substrate specificity of a mammalian beta-carotene 15,15′-dioxygenase. J Biol Chem 276: 6560–6565

    Article  CAS  PubMed  Google Scholar 

  • Rhee K-H, Morris EP, Barber J and Kühlbrandt W (1998) Three-dimensional structure of Photosystem II reaction center at 8 angstrom resolution. Nature 396: 283–286

    CAS  PubMed  Google Scholar 

  • Rissler HM and Pogson BJ (2001) Antisense inhibition of the beta-carotene hydroxylase enzyme in Arabidopsis and the implications for carotenoid accumulation, photoprotection and antenna assembly. Photosynth Res 67: 127–137

    Article  CAS  PubMed  Google Scholar 

  • Rohmer M, Bouvier P and Ourisson G (1979) Molecular evolution of biomembranes — structural equivalents and phylogenetic precursors of sterols. ProcNatl Acad Sci USA 76: 847–851

    CAS  Google Scholar 

  • Ros F, Bassi R and Paulsen H (1998) Pigment-binding properties of the recombinant Photosystem II subunit CP26 reconstituted in vitro. Eur J Biochem 253: 653–658

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Phillip D, Young AJ and Horton P (1998) Excited-state energy level does not determine the differential effect of violaxanthin and zeaxanthin on chlorophyll fluorescence quenching in the isolated light-harvesting complex of Photosystem II. Photochem Photobiol 68: 829–834

    Article  CAS  Google Scholar 

  • Ruban AV, Lee PJ, Wentworth M, Young AJ and Horton P (1999) Determination of the stoichiometry and strength of binding of xanthophylls to the Photosystem II light harvesting complexes. J Biol Chem 274: 10458–10465

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Pascal AA, Robert B and Horton P (2002) Activation of zeaxanthin is an obligatory event in the regulation of photosynthetic light harvesting. J Biol Chem 277: 7785–7789

    CAS  PubMed  Google Scholar 

  • Satoh K (1993) Isolation and properties of the Photosystem II reaction center. In: Deisenhofer J and Norris J (eds) The Photosynthetic Reaction Center, Vol 1, pp 289–318. Academic Press, San Diego

    Google Scholar 

  • Savitch LV, Leonardos ED, Krol M, Jansson S, Grodzinski B, Huner NPA and Öquist G (2002) Two different strategies for light utilization in photosynthesis in relation to growth and cold acclimation. Plant Cell Environ 25: 761–771

    Article  CAS  Google Scholar 

  • Schindler C and Lichtenthaler H (1994) Is there a correlation between light-induced zeaxanthin accumulation and quenching of variable chlorophyll a fluorescence. Plant Physiol Biochem 32: 813–823

    CAS  Google Scholar 

  • Schmid VHR, Cammarata KV, Brans BU and Schmidt GW (1997) In vitro reconstitution of the Photosystem I light-harvesting complex LHCI-730: Heterodimerization isrequired for antenna pigment organization. Proc Natl Acad Sci USA 94:7667–7672

    CAS  PubMed  Google Scholar 

  • Seibert M (1993) Biochemical, biophysical, and structural characterization of the Photosystem II reaction center complex. In: Deisenhofer J and Norris J (eds) The Photosynthetic Reaction Center, Vol 1, pp 319–356. Academic Press, San Diego

    Google Scholar 

  • Seo M and Koshiba T (2002) Complex regulation of ABA biosynthesis in plants. Trends Plant Sci 7: 41–48

    Article  CAS  PubMed  Google Scholar 

  • Siefermann D and Yamamoto HY (1975) Light-induced de-epoxidation of violaxanthin in lettuce chloroplasts. Biochim BiophysActa387: 149–158

    CAS  Google Scholar 

  • Siefermann-Harms D and Angerhofer A (1998) Evidence for an O2-barrier in the light-harvesting chlorophyll-a/b-protein complex LHC II. Photosynth Res 55: 83–94

    Article  CAS  Google Scholar 

  • Siefermann-Harms D, Joyard J and Douce R (1978) Light-induced changes of the carotenoid levels in chloroplast envelopes. Plant Physiol 61: 530–533

    CAS  Google Scholar 

  • Siefermann-Harms D, Borch G and Liaaen-Jensen S (1981) Lactucaxanthin, an e, e-carotene-3,3’-diol from Lactuca sativa. Phytochemistry 20: 85–88

    Article  CAS  Google Scholar 

  • Subczynski W, Hyde J and Kusumi A (1989) Oxygen permeability of phosphatidylcholine-cholesterol membranes. Proc Natl Acad Sci USA 86: 4474–4478

    CAS  PubMed  Google Scholar 

  • Sun WH, Verhoeven AS, Bugos RC and Yamamoto HY (2001) Suppression of zeaxanthin formation does not reduce photosynthesis and growth of transgenic tobacco under field conditions. Photosynth Res 67: 41–50

    Article  CAS  PubMed  Google Scholar 

  • Sun ZR, Gantt E and Cunningham FX (1996) Cloning and functional analysis of the beta-carotene hydroxylase of Ambidopsis thaliana. J Biol Chem 271: 24349

    CAS  PubMed  Google Scholar 

  • Telfer A (2002) What is beta-carotene doing in the Photosystem II reaction centre? Phil Trans R Soc Lond B 357: 1431–1439

    Article  CAS  Google Scholar 

  • Thayer SS and Björkman O(1990) Leaf xanthophyll content and composition in sun and shade determined by HPLC. Photosynth Res 23:331–343

    Article  CAS  Google Scholar 

  • Thidholm E, Lindstrom V, Tissier C, Robinson C, Schroder WP and Funk C (2002) Novel approach reveals localisation and assembly pathway of the PsbS and PsbW proteins into the Photosystem II dimer. FEBS Lett 513: 217–222

    Article  CAS  PubMed  Google Scholar 

  • Tian L and DellaPenna D (2001) Characterization of a second carotenoid B-hydroxylase gene from Arabidopsis and its relationship to the LUT1 locus. Plant Mol Biol 47: 379–388

    Article  CAS  PubMed  Google Scholar 

  • Tian L, Musetti V, Kim J, Magallanes-Lundback M, DellaPenna D (2004) The Arabidopsis LUT1 locus encodes a member of the cytochrome P450 family that is required for carotenoid epsilon-ring hydroxylation activity. Proc Natl Acad Sci USA 101:402–407

    CAS  PubMed  Google Scholar 

  • Tracewell CA, Vrettos JS, Bautista JA, Frank HA and Brudvig GW (2001) Carotenoid photooxidation in Photosystem II. Arch Biochem Biophys 385: 61–69

    Article  CAS  PubMed  Google Scholar 

  • Verhoeven AS, Adams III WW, B. D-A, Croce R and Bassi R (1999) Xanthophyll cycle pigment localization and dynamics during exposure to low temperatures and light stress in Vican major. Plant Physiol 120: 727–738

    Article  CAS  PubMed  Google Scholar 

  • Verhoeven AS, Bugos RC and Yamamoto HY (2001) Transgenic tobacco with suppressed zeaxanthin formation is susceptible to stress-induced photoinhibition. Photosynth Res 67: 27–39

    Article  CAS  PubMed  Google Scholar 

  • von Lintig J, Welsch R, Bonk M, Giuliano G, Batschauer A and Kleinig H (1997) Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in Sinapis alba and Arabidopsis thaliana seedlings. Plant J 12: 625–634

    Article  Google Scholar 

  • Vrettos JS, Stewart DH, de Paula JC and Bradvig GW (1999) Low-temperature optical and resonance Raman spectra of a carotenoid cation radical in Photosystem II. J Phys Chem B 103:6403–6406

    Article  CAS  Google Scholar 

  • Walters RG, Ruban AV and Horton P (1996) Identification of proton-active residues in a higher plant light-harvesting complex. Proc Natl Acad Sci USA 93: 14204–14209

    Article  CAS  PubMed  Google Scholar 

  • Welsch R, Beyer P, Hugueney P, Kleinig H and von Lintig J (2000) Regulation and activation of phytoene synthase, a key enzyme in carotenoid biosynthesis, during photomorphogenesis. Planta 211:846–854

    Article  CAS  PubMed  Google Scholar 

  • Wetzel CM, Jiang CZ, Meehan LJ, Voytas DF and Rodermel SR (1994) Nuclear-organelle interactions: The immutans variegation mutant of Arabidopsis is plastid autonomous and impaired in carotenoid biosynthesis. Plant J 6: 161–175

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H (1962) Studies on the light and dark interconversions of leaf xanthophylls. Biochim Biophys Acta 97: 168–173

    CAS  Google Scholar 

  • Yamamoto HY (1979) Biochemistry of the xanthophyll cycle in higher plants. Pure Appl Chem 51: 639–648

    CAS  Google Scholar 

  • Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P and Potrykus I (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287: 303–305

    Article  CAS  PubMed  Google Scholar 

  • Young AJ (1993) Occurrence and distribution of carotenoids in photosynthetic systems. In: Young AJ and Britton G (eds) Carotenoids in Photosynthesis, pp 16–71. Chapman and Hall, London

    Google Scholar 

  • Young AJ and Frank HA (1996) Energy transfer reactions involving carotenoids: Quenching of chlorophyll fluorescence. J Photochem Photobiol B 36: 3–15

    Article  CAS  PubMed  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauß N, Saenger W and Orth P (2001) Crystal structure of Photosystem II from Synechococcus elongatus at 3.8 angstrom resolution. Nature 409:739–743

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Pogson, B.J., Rissler, H.M., Frank, H.A. (2005). The Role of Carotenoids in Energy Quenching. In: Wydrzynski, T.J., Satoh, K., Freeman, J.A. (eds) Photosystem II. Advances in Photosynthesis and Respiration, vol 22. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4254-X_24

Download citation

Publish with us

Policies and ethics

Navigation