Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 125))

Abstract

When subjected to a mechanical loading, the solid phase of a saturated porous medium undergoes a dissolution due to strain-stress concentration effects along the fluid-solid interface. Through a micromechanical analysis, the mechanical affinity is shown to be the driving force of the local dissolution. For cracked porous media, the elastic free energy is a dominant component of this driving force. This allows to predict dissolution-induced creep in such materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Deudé, V., Dormieux, L., Kondo, D. and Maghous, S. (2002) Micromechanical approach to non linear poroelasticity: application to cracked rocks, Journal of Engineering Mechanics 128(8), 848–855

    Google Scholar 

  2. Ghoussoub, J. and Leroy., Y. (2001) Solid-fluid phase transformation within grain boundaries during compaction by pressure solution, J. Mech. Phys. Solids 49, 2385–2430

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Lemarchand, E., Dormieux, L., Ulm, FJ. (2005). A Micromechanics Approach to the Mechanically-Induced Dissolution in Porous Media. In: Gladwell, G.M.L., Huyghe, J., Raats, P.A., Cowin, S.C. (eds) IUTAM Symposium on Physicochemical and Electromechanical Interactions in Porous Media. Solid Mechanics and Its Applications, vol 125. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3865-8_37

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3865-8_37

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3864-8

  • Online ISBN: 978-1-4020-3865-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation