Cluster Observations of the Cusp: Magnetic Structure and Dynamics

  • Chapter
The Magnetospheric Cusps: Structure and Dynamics

Abstract

This paper reviews Cluster observations of the high altitude and exterior (outer) cusp, and adjacent regions in terms of new multi-spacecraft analysis and the geometry of the surrounding boundary layers. Several crossings are described in terms of the regions sampled, the boundary dynamics and the electric current signatures observed. A companion paper in this issue focuses on the detailed plasma distributions of the boundary layers. The polar Cluster orbits take the four spacecraft in a changing formation out of the magnetosphere, on the northern leg, and into the magnetosphere, on the southern leg, of the orbits. During February to April the orbits are centred on a few hours of local noon and, on the northern leg, generally pass consecutively through the northern lobe and the cusp at mid- to high-altitudes. Depending upon conditions, the spacecraft often sample the outer cusp region, near the magnetopause, and the dayside and tail boundary layer regions adjacent to the central cusp. On the southern, inbound leg the sequence is reversed. Cluster has therefore sampled the boundaries around the high altitude cusp and nearby magnetopause under a variety of conditions. The instruments onboard provide unprecedented resolution of the plasma and field properties of the region, and the simultaneous, four-spacecraft coverage achieved by Cluster is unique. The spacecraft array forms a nearly regular tetrahedral configuration in the cusp and already the mission has covered this region on multiple spatial scales (100–2000 km). This multi-spacecraft coverage allows spatial and temporal features to be distinguished to a large degree and, in particular, enables the macroscopic properties of the boundary layers to be identified: the orientation, motion and thickness, and the associated current layers. We review the results of this analysis for a number of selected crossings from both the North and South cusp regions. Several key results have been found or have confirmed earlier work: (1) evidence for magnetically defined boundaries at both the outer cusp/magnetosheath interface and the inner cusp/lobe or cusp/dayside magnetosphere interface, as would support the existence of a distinct exterior cusp region; (2) evidence for an associated indentation region on the magnetopause across the outer cusp; (3) well defined plasma boundaries at the edges of the mid- to high-altitude cusp “throat”, and well defined magnetic boundaries in the high-altitude “throat”, consistent with a funnel geometry; (4) direct control of the cusp position, and its extent, by the IMF, both in the dawn/dusk and North/South directions. The exterior cusp, in particular, is highly dependent on the external conditions prevailing. The magnetic field geometry is sometimes complex, but often the current layer has a well defined thickness ranging from a few hundred (for the inner cusp boundaries) to 1000 km. Motion of the inner cusp boundaries can occur at speeds up to 60 km/s, but typically 10–20 km/s. These speeds appear to represent global motion of the cusp in some cases, but also could arise from expansion or narrowing in others. The mid- to high-altitude cusp usually contains enhanced ULF wave activity, and the exterior cusp usually is associated with a substantial reduction in field magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Balogh, A., Carr, C. M., Acuña, M. H., Dunlop, M. W., Beek, T. J., Brown, P., Fornacon, K.-H., Georgescu, E., Glassmeier, K.-H., Harris, J., Musmann, G., Oddy, T., and Schwingenschuh, K.: 2001, ‘The Cluster Magnetic Field Investigation: Overview of inflight Performance and Initial Results’, Ann. Geophys. 19, 1207–1217.

    Article  ADS  Google Scholar 

  • Cargill, P. J., Dunlop, M. W., Balogh, A., and the FGM Team: 2001, ‘First Cluster Results of the Magnetic Field Structure of the Medium and High-altitude Cusps’, Ann. Geophys. 19, 1533–1543.

    Article  ADS  Google Scholar 

  • Cargill, P. J., Dunlop, M. W., Lavraud, B., Elphic, R.C., Holland, D. L., Nykyri, K., Balogh, A., Danouras, I., and Réme, H.: 2003, ‘CLUSTER Encounters with the High Altitude Cusp: Boundary Structure and Magnetic Field Depletions’, submitted to Ann. Geophys.

    Google Scholar 

  • Dubinin, E., Skalsky, A., Song, P., Savin, S., Kozyra, J., Moore, T. E., Russell, C. T., Chandler, M. O., Fedorov, A., Avanov, L., Sauvaud, J.-A., and Friedel, R. H. W.: 2002, ‘Polar Interball Co-ordinated Observations of Plasma and Magnetic Field Characteristics in the Regions of the Northern and Southern Distant Cusps’, J. Geophys. Res. 107(A5), Art. No. 1053.

    Google Scholar 

  • Dunlop, M. W., Southwood, D. J., and Balogh, A.: 1993, ‘The Cluster Configuration and the Directional Dependence of Coherence Lengths in the Magnetosheath’, in Proceedings of Spatio-Temporal Analysis for Resolving Plasma Turbulence (START), Aussois, France, ESA WPP-47, pp. 295–299.

    Google Scholar 

  • Dunlop, M. W., and Balogh, A.: 1993, ‘On the Analysis and Interpretation of Four Spacecraft Magnetic Field Measurements in Terms of Small Scale Plasma Processes’, in Spatiotemporal Analysis for Resolving Plasma Turbulence (START) ESA WPP-047, pp. 223–231.

    Google Scholar 

  • Dunlop, M. W., Woodward, T. I., Southwood, D. J., Glassmeier, K.-H., and Elphic, R. C.: 1997, ‘Merging 4 Spacecraft Data: Concepts Used for Analysing Discontinuities’, Adv. Space Res. 20, 1101–1106.

    Article  ADS  Google Scholar 

  • Dunlop, M. W., and Woodward, T. I.: 1998, ‘Discontinuity Analysis: Orientation and Motion’, ISSI Scientific Report SR-001, Kluwer Academic Publishers, pp. 271–305.

    Google Scholar 

  • Dunlop, M. W., and Woodward, T. I.: 1999, ‘Analysis of Thick, Non-planar Boundaries Using the Discontinuity Analyser’, Ann Geophys. 17, 984–995.

    Article  ADS  Google Scholar 

  • Dunlop, M. W., Cargill, P., Stubbs, T., and Woolliams, P.: 2000, ‘The High Altitude Cusps: HEOS-2’, J. Geophys. Res. 105, 27509–27517.

    Article  ADS  Google Scholar 

  • Dunlop, M. W., Balogh, A., and Glassmeier, K.-H.: 2002a, ‘Four-Point Cluster Application Of Magnetic Field Analysis Tools: The Discontinuity Analyser’, in press, J. Geophys. Res. 107(A11), Art. No. 1385.

    Google Scholar 

  • Dunlop, M. W., Balogh, A., Glassmeier, K.-H., and Robert, P.: 2002b, ‘Four-Point Cluster Application of Magnetic Field Analysis Tools: The Curlometer’, in press, J. Geophys. Res. 107(A11), Art. No. 1384.

    Google Scholar 

  • Eastman, T. E., Boardsen, S. A., Chen, S-H., and Fung, S. F.: 2000, ‘Configuration of Highlatitude and High-altitude Boundary Layers’, J. Geophys. Res. 105, 23193–23238.

    Article  ADS  Google Scholar 

  • Farrell, W. M., and Allen, J. A.Van: 1990, ‘Observations of the Earth’s Polar Cleft at Large Radial Distances with the Hawkeye 1 Satellite’, J. Geophys. Res. 95, 20945–20958.

    Article  ADS  Google Scholar 

  • Fedorov, A., Dubinin, E., Song, P., Budnick, E., Larson, P., and Sauvaud, J.-A.: 2000, ‘Characteristics of the Exterior Cusp for Steady Southward Interplanetary Magnetic Field: Interball Observations’, J. Geophys. Res. 105, 15945–15957.

    Article  ADS  Google Scholar 

  • Frank, L. A.: 1971, ‘Plasma in the Earth’s Polar Magnetosphere’, J. Geophys. Res. 76, 5202–5219.

    Article  ADS  Google Scholar 

  • Fritz, T. A., Chen, J., and Siscoe, G. L.: 2003, ‘Energetic Ions, Large Diamagnetic Cavities, and Chapman-Ferraro Cusp’, J. Geophys. Res. 108,(A1): Art. No. 1028.

    Google Scholar 

  • Grande, M., Fennell, J., Livi, S., Kellett, B., Perry, C. H., Anderson, P., Roeder, J., Spence, H., Fritz, T., and Wilken, B.: 1997, ‘First Polar and 1995-034 Observations of the Mid-altitude Cusp During a Persistent Northward IMF Condition’, Geophys. Res. Lett. 24, 1475–1478.

    Article  ADS  Google Scholar 

  • Haerendel, G., Paschmann, G., Sckopke, N., and Rosenbauer, H.: 1978, ‘The Frontside Boundary Layer of the Magnetosphere and the Problem of Reconnection’, J. Geophys. Res. 83, 3195–3216.

    Article  ADS  Google Scholar 

  • Johnstone, A. D., Alsop, C., Burge, S., Carter, P. J., Coates, A. J., Coker, A. J., Fazakerley, A. N., Grande, M., Gowen, R. A., Gurgiolo, C., Hancock, B. K., Narheim, B., Preece, A., Sheather, P. H., Winningham, J. D., and Woodliffe, R. D.: 1997, ‘Peace: A Plasma Electron and Current Experiment’, Space Sci. Rev. 79, 351–398.

    Article  ADS  Google Scholar 

  • Kessel, R. L., Chen, S.-H., Green, J. L., Fung, S. F., Boardsen, S. A., Tan, L. C., Eastman, T. E., Craven, J. D., and Frank, L. A.: 1996, ‘Evidence of High-latitude Reconnection during Northward IMF: Hawkeye Observations’, Geophys. Res. Lett. 23, 583–586.

    Article  ADS  Google Scholar 

  • Lavraud, B., Dunlop, M. W., Phan, T. D., Reme, H., Bosqued, J. M., Dandouras, I., Sauvaud, J. A., Lundin, R., Taylor, M. G. G. T., Cargill, P. J., Mazelle, C., Escoubet, C. P., Carlson, C. W., McFadden, J. P., Parks, G. K., Moebius, E., Kistler, L. M., Bavassano-Cattaneo, M. B., Korth, A., Klecker, B., and Balogh, A.: 2002, ‘Cluster Observations of the Exterior Cusp and its Surrounding Boundaries under Northward IMF’, Geophys. Res. Lett. 29(20), 56–63.

    Article  ADS  Google Scholar 

  • Lavraud, B., Réme, H., Dunlop, M. W., Bosqued, J.-M., Dandouras, I., Sauvaud, J.-A., Keiling, A., Phan, T. D., Lundin, R., Cargill, P., Escoubet, C. P., Carlson, C. W., McFadden, J. P., Parks, G. K., Moebius, E., Kistler, L., Amata, E., Bavassano-Cattaneo, M.-B., Korth, A., Klecker, B., and Balogh, A.: 2003, ‘Cluster Observes the High Altitude/ Exterior Cusp Regions’. This issue.

    Google Scholar 

  • Lep**, R. P., Acuna, M., Burlaga, L., Farrell, W., Slavin, J., Schatten, K., Mariani, F., Ness, N., Newbauer, F., Whang, Y. C., Byrnes, J., Kennon, R., Panetta, P., Scheifele, J., and Worleyet, E.: 1995, ‘The WIND Magnetic Field Investigation’, Space Sci. Revs. 71, 207–229.

    Article  ADS  Google Scholar 

  • Lundin, R., Sauvaud, J.-A., Réme, H., Balogh, A., Dandouras, I., Bosqued, J. M., Carlson, C., Parks, G. K., Moebius, E., Kistler, L. M., Klecker, B., Amata, E., Formisano, V., Dunlop, M. W., Eliasson, L., Korth, A., Lavraud, B., and McCarthy, M.: 2003, ‘Evidence for Impulsive Solar Wind Plasma Penetration through the Dayside Magnetopause’, Ann. Geophys. 21, 457–472.

    Article  ADS  Google Scholar 

  • Marchaudon, A., Cerisier, J.-C., Bosqued, J.-M., Dunlop, M. W., Wild, J. A., Dècrèau, P. M. E., Förster, M., Fontaine, D., and Laakso, H.: 2003, ‘Transient Plasma Injections in the Dayside Magnetosphere: One-to-one Correlated Observations by Cluster and B Y SuperDARN’. In press, Ann. Geophys.

    Google Scholar 

  • Newell, P. T., and Meng, C. I.: 1988, ‘The Cusp and the Cleft/LLBL: Low Altitude Identification and Statistical Local Time Variation’, J. Geophys. Res. 93, 14549–14556.

    Article  ADS  Google Scholar 

  • Newell, P. T., Meng, C. I., Sibeck, D. G., and Lep**, P.: 1989, ‘Some Low-altitude Cusp Dependencies on the Interplanetary Magnetic Field’, J. Geophys. Res. 94, 8921–8927.

    Article  ADS  Google Scholar 

  • Newell, P. T., and Meng, C. I.: 1994, ‘Ionospheric Projections of Magnetospheric Regions under Low and High Solar Wind Pressure Conditions’, J. Geophys. Res. 99, 273–286.

    Article  ADS  Google Scholar 

  • Ogilvie, K. W., Chornay, D. J., Fritzenreiter, R. J., Hunsaker, F., Lobell, J., Miller, G., Scudder, J. D., Sittler, E. C. Jr., Tobert, R., Bodet, D., Needell, G., Lazarus, A. J., Steinberg, J. T., Tappan, J. H., Marretic, A., Keller, J., and Gergin, E.: 1995, ‘SWE: A Comprehensive Plasma Instrument for the WIND Spacecraft’, Space Sci. Revs. 71, 55–77.

    Article  ADS  Google Scholar 

  • Onsager, T. G., Scudder, J. D., Lockwood, M., and Russell, C. T.: 2001, ‘Reconnection at the High-Latitude Magnetopause during Northward Interplanetary Magnetic Field Conditions’, J. Geophys. Res. 106, 25467–25488.

    Article  ADS  Google Scholar 

  • Paschmann, G., Haerendel, G., Sckopke, N., and Rosenbauer, H.: 1976, ‘Plasma and Magnetic Field Characteristics of the Distant Polar Cusp Near Local Noon: The Entry Layer’, J. Geophys. Res. 81, 2883–2899.

    Article  ADS  Google Scholar 

  • Paschmann, G., and Daley, P. (eds): 1988, Analysis Methods for Multispacecraft Data. ISSI Scientific Report SR-001, Kluwer Academic Publishers, pp. 271–284.

    Google Scholar 

  • Réme, H., Aoustin, C., Bosqued, M., Dandouras, I., Lavraud, B., Sauvaud, J.-A., Barthe, A., Bouyssou, J., Camus, T., Coeur-Joly, O., Cros, A., Cuvilo, J., Ducay, F., Garbarowitz, Y., Medale, J. L., Penou, E., Perrier, H., Romefort, D., Rouzaud, J., Vallat, C., Alcayde, D., Jacquey, C., Mazelle, C., d’Uston, C., Mobius, E., Kistler, L. M., Crocker, K., Granoff, M., Mouikis, C., Popecki, M., Vosbury, M., Klecker, B., Hovestadt, D., Kucharek, H., Kuenneth, E., Paschmann, G., Scholer, M., Sckopke, N., Seidenschwang, E., Carlson, C. W., Curtis, D. W., Ingraham, C., Lin, R. P., McFadden, J. P., Parks, G. K., Phan, T., Formisano, V., Amata, E., Bavassano-Cattaneo, M. B., Baldetti, P., Bruno, R., Chionchio, G., Di Lellis, A., Marcucci, M. F., Pallocchia, G., Korth, A., Daly, P. W., Graeve, B., Rosenbauer, H., Vasyliunas, V., McCarthy, M., Wilber, M., Eliasson, L., Lundin, R., Olsen, S., Shelley, E. G., Fuselier, S., Ghielmetti, A. G., Lennartsson, W., Escoubet, C. P., Balsiger, H., Friedel, R., Cao, J. B., Kovrazhkin, R. A., Papamastorakis, I., Pellat, R., Schudder, J., and Sonnerup, B.: 2001, ‘First Multispacecraft Ion Measurements in and Near the Earth’s Magnetosphere with the Identical Cluster Ion Spectrometry (CIS) Experiment’, Ann. Geophys. 19, 1303–1354.

    Article  ADS  Google Scholar 

  • Robert, P., and Roux A.: 1993, ‘Dependance of the Shape of the Tetrahedron on the Accuracy of the Estimate of the Current Density’, in Spatio-temporal Analysis for Resolving Plasma Turbulence (START), ESA WPP-047, pp. 289–302.

    Google Scholar 

  • Robert, P., Dunlop, M.W., Roux, A., and Chanteur, G.: 1998, ‘Accuracy of Current Density Determination, in Analysis Methods for Multispacecraft Data’, ISSI Science Report, SR-001, Kluwer Academic Publishers, pp. 395–418.

    Google Scholar 

  • Russell, C. T., Melliot, M. M., Smith, E. J., and King, J. H.: 1983, ‘Multiple Spacecraft Observations of Interplanetary Shocks: Four Spacecraft Determinations of Shock Normals’, J. Geophys. Res. 88, 4739–4748.

    Article  ADS  Google Scholar 

  • Russell, C.T.: 2000, ‘POLAR Eyes in the Cusp, Proc. of the Cluster II workshop: Multiscale/Multi-oint Plasma Measurements’, ESA SP-449, pp. 47–55.

    Google Scholar 

  • Savin, S. P., Romanov, S. A., Fedorov, A. O., Zelenyi, L., Klimov, S. I., Yermolaev, Yu. I, Budnik, E. Yu, Nikolaeva, N. S., Russell, C. T., Zhou, X.-W., Urquhart, A. L., and Reiff, P. H.: 1998, ‘The Cusp/Magnetosheath Interface on May 29, 1996: Interball 1 and Polar Observations’, Geophys. Res. Lett. 25, 2963–2966.

    Article  ADS  Google Scholar 

  • Scudder, J. D., Mozer, F. S., Maynard, N. C., and Russell, C. T.: 2002, ‘Fingerprints of Collisionless Reconnection at the Separator, I, Ambipolar-Hall Signatures’, J. Geophys. Res. 107(A10), Art. No. 1294.

    Google Scholar 

  • Sibeck, D. G., Lopez, R. E., and Roelof, E. C.: 1991, ‘Solar Wind Control of the Magnetopause Shape Location and Motion’, J. Geophys. Res. 96, 5489–5495.

    Article  ADS  Google Scholar 

  • Sonnerup, B. U. O., and Cahill, L. J.: 1967, ‘Magnetopause Structure and Attitude from Explorer 12 Observations’, J. Geophys. Res. 72, 171–183.

    Article  ADS  Google Scholar 

  • Spreiter, J. R., Alksne, A. Y., and Summers, A. L..: 1968. ‘External Aerodynamics of the Magnetosphere’, in R. L. Carovillano, J. F.. McClay, and H. R.. Radoski (eds.), Physics of the Magnetosphere, D. Reidel, Hingham, Mass, pp. 301–375.

    Google Scholar 

  • Tsyganenko, N. A.: 1989, ‘A Magnetospheric Field Model with a Warped Tail Current Sheet’, Planet. Space Sci. 37, 5–20.

    Article  ADS  Google Scholar 

  • Tsyganenko, N. A., and Russell, C. T.: 1999, ‘Magnetic Signatures of the Distant Polar Cusps: Observations BY Polar and Quantitative Modeling’, J. Geophys. Res 104, 24939–24955.

    Article  ADS  Google Scholar 

  • Vasyliunas, V. M., Skopke, N., and Rosenbauer, H.: 1979, ‘Structure of the Polar Magnetosheath as Observed BY HEOS 2’, EOS Trans. AGU 58, 1206–1215.

    Google Scholar 

  • Vasyliunas, V. M.: 1995, ‘Multiple-Branch Model of the Open Magnetopause’, Geophys. Res. Lett. 22, 1145–1147.

    Article  ADS  Google Scholar 

  • Vontrat-Reberac, A., Bosqued, J. M., Taylor, M. G., Lavraud, B., Fontaine, D., Dunlop, M. W., Laakso, H., Cornilleau-Werhlin, N., Canu, P., and Fazarkerley, A.: 2003, ‘Cluster Observations of the High-altitude Cusp for Northward Interplanetary Magnetic Field: A Case Study’, J. Geophys. Res., 108(A9), Art. No. 1346.

    Google Scholar 

  • Woch, J., and Lundin, R.: 1992, ‘Magnetosheath Plasma Precipitation in the Polar Cusp and its Control BY the Interplanetary Magnetic Field’, J. Geophys. Res. 97, 1421–1430.

    Article  ADS  Google Scholar 

  • Yamauchi, M., and Lundin, R.: 1994, ‘Classification of Large-scale and Meso-scale Ion Dispersion Patterns Observed BY Viking over the Cusp-mantle Region’, in J. A. Holtet, and A. Egeland (eds.), Physical Signatures of Magnetospheric Boundary Layer Process, Kluwer Academic Publishers, pp. 99–109.

    Google Scholar 

  • Yamauchi, M., Nilsson, H., Eliasson, L., Norberg, O., Boehm, M., Clemmons, J. H., Lep**, R. P., Blomberg, L., Ohtani, S.-I., Yamamoto, T., Mukai, T., Terasawa, T., and Kokubun, S.: 1996, ‘Dynamic Response of the Cusp Morphology to the Solar Wind: A Case Study during Passage of the Solar Wind Plasma Cloud on February 21, 1994’, J. Geophys. Res. 101, 24675–24687.

    Article  ADS  Google Scholar 

  • Zhou, X.-W., and Russell, C. T.: 1997, ‘The Location of the High-latitude Polar Cusp and the Shape of the Surrounding Magnetopause’, J. Geophys. Res. 102, 105–110.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Theodore A. Fritz Shing F. Fung

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Dunlop, M.W. et al. (2005). Cluster Observations of the Cusp: Magnetic Structure and Dynamics. In: Fritz, T.A., Fung, S.F. (eds) The Magnetospheric Cusps: Structure and Dynamics. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3605-1_2

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3605-1_2

  • Received:

  • Accepted:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3438-1

  • Online ISBN: 978-1-4020-3605-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics

Navigation