Hierarchical Modeling of Thermal Transport from Nano-to-Macroscales

  • Conference paper
Microscale Heat Transfer Fundamentals and Applications

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 193))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 245.03
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 299.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 299.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10. References

  1. International Technology Roadmap for Semiconductors, http://pubic.itrs.net/.

    Google Scholar 

  2. Asheghi, M., Y.K. Leung, S.S. Wong, and K.E. Goodson, Phonon-Boundary Scattering in Thin Silicon Layers. Applied Physics Letters, 1997. 71(13): p. 1798–1800.

    Article  Google Scholar 

  3. Asheghi, M., M.N. Touzelbaev, K.E. Goodson, Y.K. Leung, and S.S. Wong, Temperature-Dependent Thermal Conductivity of Single-Crystal Silicon Layers in SOI Substrates. Journal of Heat Transfer, 1998. 120: p. 30–36.

    Google Scholar 

  4. Chen, G., Micro and Nanoscale Thermal Phenomena in Photonic Devices, in Annual Review of Heat Transfer. 1996. p. 1–57.

    Google Scholar 

  5. Chen, G., Nanoscale Heat Transfer and Information Technology. Proceedings of 2003 Rohsenow Symposium on Future Trends of Heat Transfer, MIT, Cambridge, MA, 2003.

    Google Scholar 

  6. Dresselhaus, M.S., Nanostructures and Energy Conversion. Proceedings of 2003 Rohsenow Symposium on Future Trends of Heat Transfer, MIT, Cambridge, MA, 2003.

    Google Scholar 

  7. Volz, S.G. and G. Chen, Molecular Dynamics Simulation of Thermal Conductivity of Silicon Nanowires. Applied Physics Letters, 1999. 75(14): p. 2056–2058.

    Article  Google Scholar 

  8. Li, D., Y. Wu, P. Kim, P. Yang, and A. Majumdar, Thermal Conductivity of Individual Silicon Nanowires. Applied Physics Letters, 2003. 83(14): p. 2394–2396.

    Google Scholar 

  9. Li, D., Y. Wu, F. Rong, P. Yang, and A. Majumdar, Thermal Conductivity of Si/SiGe Superlattice Nanowires. Applied Physics Letters, 2003. 83(15): p. 3186–3188.

    Article  Google Scholar 

  10. Volz, S., J.B. Saulnier, G. Chen, and P. Beauchamp, Computation of Thermal Conductivity of Si/Ge Superlattice by Molecular Dynamics Technique. Microelectronics Journal, 2000. 31(9–10): p. 815–819.

    Article  Google Scholar 

  11. Daly, B.C. and H.J. Maris, Calculation of the Thermal Conductivity of Superlattices by Molecular Dynamics Simulation. Physica B, 2002. 316–317: p. 247–249.

    Article  Google Scholar 

  12. Abramsom, A.R., C.-L. Tien, and A. Majumdar, Interface and Strain Effects on the Thermal Conductivity of Heterostructures: A Molecular Dynamics Study. Journal of Heat Transfer, 2002. 124: p. 963–970.

    Article  Google Scholar 

  13. Hone, J., M.C. Llaguno, M.J. Biercuk, A.T. Johnson, B. Batlogg, Z. Benes, and J.E. Fischer, Thermal Properties of Carbon Nanotubes and Nanotube-based Materials. Applied Physics A, 2002. A74(3): p. 339–43.

    Google Scholar 

  14. Cahill, D.G., K.E. Goodson, and A. Majumdar, Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures. ASME Journal of Heat Transfer, 2002. 124: p. 223–241.

    Article  Google Scholar 

  15. Cahill, D.G., W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, and S.R. Phillpot, Nanoscale Thermal Transport. Journal of Applied Physics, 2003. 93(2): p. 793–818.

    Article  Google Scholar 

  16. Shi, L., D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, and A. Majumdar, Measuring Thermal and Thermoelectric Properties of One-dimensional Nanostructures Using a Microfabricated Device. ASME Journal of Heat Transfer, 2003. 125: p. 881–888.

    Article  Google Scholar 

  17. Berber, S., Y.K. Kwon, and D. Tornanek, Unusually High Thermal Conductivity of Carbon Nanotubes. Physical Review Letters, 2000. 84: p. 4613.

    Article  Google Scholar 

  18. Amon, C.H. Advances in Computational Modeling of Nano-scale Heat Transfer. in 12th International Heat Transfer Conference. 2002. Grenoble, France.

    Google Scholar 

  19. Ashcroft, N.W. and N.D. Mermin, Solid State Physics. 1976: Saunders College Publishers.

    Google Scholar 

  20. Kittel, C., Introduction to Solid State Physics. 1996, New York, NY: John Wiley.

    Google Scholar 

  21. Flik, M.I., B.I. Choi, and K.E. Goodson, Heat Transfer Regimes in Microstructures. ASME Journal of Heat Transfer, 1992. 114: p. 666–674.

    Google Scholar 

  22. Majumdar, A., ed. Microscale Energy Transport in Solids. Microscale Energy Transport, ed. C.L. Tien, A. Majumdar, and F.M. Gerner. 1998, Taylor and Francis: Washington DC. 1–94.

    Google Scholar 

  23. Chen, G., Phonon Wave Heat Conduction in Thin Films and Superlattices. Journal of Heat Transfer, 1999. 121: p. 945–953.

    Google Scholar 

  24. Che, J., T. Çagin, W. Deng, and W.A. Goddard, Thermal Conductivity of Diamond and Related Materials from Molecular Dynamics Simulations. Journal of Chemical Physics, 2000. 113(16): p. 6888–6900.

    Article  Google Scholar 

  25. Ciraci, S., A. Buldum, and I.P. Batra, Quantum Effects in Electrical and Thermal Transport Through Nanowires. Journal of Physics: Condensed Matter, 2001. 13: p. R537–R568.

    Article  Google Scholar 

  26. Tien, C.L. and G. Chen, Challenges in Microscale Conductive and Radiative Heat Transfer. Journal of Heat Transfer, 1994. 116: p. 799–807.

    Google Scholar 

  27. Mahan, G.D., Many-Particle Physics. 2000, Dordrecht: Kluwer-Plenum.

    Google Scholar 

  28. Klemens, P.G., Thermal Conductivity and Lattice Vibrational Modes, in Solid State Physics, F. Seitz and D. Thurnbull, Editors. 1958, Academic Press, New York. p. 1–98.

    Google Scholar 

  29. Klemens, P.G., Theory of Thermal Conductivity of Solids, in Thermal Conductivity, R.P. Tye, Editor. 1969, Academic Press: London. p. 1–68.

    Google Scholar 

  30. Narumanchi, S.V.J., J.Y. Murthy, and C.H. Amon. Boltzmann Transport Equation-based Thermal Modeling Approaches for Microelectronics. in 2nd International Thermal Sciences Seminar. 2004. Bled, Slovenia.

    Google Scholar 

  31. Balandin, A., and Wang, K.L., Significant Decrease of the Lattice Thermal Conductivity due to Phonon Confinement in a Free-standing Semiconductor Quantum Well. Physical Review B, 1998. 58(3): p. 1544–1549.

    Article  Google Scholar 

  32. McGaughey, A.J.H., M. Kaviany, and J.D. Chung. Integration of Molecular Dynamics and Boltzmann Transport Equation in Phonon Thermal Conductivity Analysis. in ASME International Mechanical Engineering Congress and Exposition IMECE2003-41899. 2003. Washington, DC.

    Google Scholar 

  33. Majumdar, A., Microscale Heat Conduction in Dielectric Thin Films. ASME Journal of Heat Transfer, 1993. 115: p. 7–16.

    Article  Google Scholar 

  34. Joshi, A.A. and A. Majumdar, Transient Ballistic and Diffusive Phonon Transport in Thin Films. Journal of Applied Physics, 1993. 74(1): p. 31–39.

    Article  Google Scholar 

  35. Chen, G., Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures. Journal of Heat Transfer, 1997. 119: p. 220–229.

    Google Scholar 

  36. Chen, G., Thermal Conductivity and Ballistic-phonon Transport in the Cross-plane Direction of Superlattices. Physical Review B, 1998. 57(23): p. 14958–14973.

    Article  Google Scholar 

  37. Goodson, K.E., Thermal Conduction in Nonhomogeneous CVD Diamond Layers in Electronic Microstructures. ASME Journal of Heat Transfer, 1996. 118: p. 279–286.

    Google Scholar 

  38. Goodson, K.E., Y.S. Ju, and M. Asheghi, Thermal Phenomena in Semiconductor Devices and Interconnects, in Microscale Energy Transport, ed. C.L. Tien, A. Majumdar, and F.M. Gerner. 1998: Taylor & Francis.

    Google Scholar 

  39. Narumanchi, S.V.J., J.Y. Murthy, and C.H. Amon, Simulation of Unsteady Small Heat Source Effects in Sub-micron Heat Conduction. ASME Journal of Heat Transfer, 2003. 125(5): p. 896–903.

    Article  Google Scholar 

  40. Holland, M.G., Analysis of Lattice Thermal Conductivity. Physical Review, 1963. 132(6): p. 2461–2471.

    Article  MathSciNet  Google Scholar 

  41. Ju, Y.S., Microscale Heat Conduction in Integrated Circuits and their Constituent Films. Ph.D. thesis, Stanford University, 1999.

    Google Scholar 

  42. Sverdrup, P.G., Simulation and Thermometry of Sub-Continuum Heat Transport in Semiconductor Devices, Ph.D. Thesis. 2000, Stanford University.

    Google Scholar 

  43. Sverdrup, P.G., Y.S. Ju, and K.E. Goodson, Sub-continuum Simulations of Heat Conduction in Silicon-on-insulator Transistors. ASME Journal of Heat Transfer, 2001. 123: p. 130–137.

    Article  Google Scholar 

  44. Narumanchi, S.V.J., J.Y. Murthy, and C.H. Amon. Computations of Sub-micron Heat Transport in Silicon Accounting for Phonon Dispersion. in ASME Summer Transfer Conference, HT2003-47490. 2003. Las Vegas, NV.

    Google Scholar 

  45. Mazumder, S., and Majumdar, A., Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization. ASME Journal of Heat Transfer, 2001. 123: p. 749–759.

    Article  Google Scholar 

  46. Narumanchi, S.V.J., J.Y. Murthy, and C.H. Amon. Simulations of Heat Conduction in Sub-micron Silicon-on-insulator Transistors Accounting for Phonon Dispersion and Polarization. in ASME International Mechanical Engineering Congress and Exposition, IMECE 2003-42447. 2003. Washington, DC.

    Google Scholar 

  47. Narumanchi, S.V.J., J.Y. Murthy, and C.H. Amon, Heat Transport During Transient Electrostatic Discharge Events in a Sub-micron Transistor. Paper No. HT-FED2004-56252, Proceedings-ASME Heat Transfer/Fluids Engineering Summer Conference, Charlotte, North Carolina, 2004.

    Google Scholar 

  48. Klemens, P.G., The Thermal Conductivity of Dielectric Solids at Low Temperatures. Proceedings of the Royal Society of London, Series A, 1951. 208(1092): p. 108–133.

    Article  MATH  Google Scholar 

  49. Klemens, P.G., The Scattering of Low Frequency Lattice Waves by Lattice Imperfections. Proceedings of the Physical Society of London, 1955. A68: p. 1113–1128.

    Google Scholar 

  50. Han, Y.-J. and P.G. Klemens, Anharmonic Thermal Resistivity of Dielectric Crystals at Low Temperatures. Physical Review B, 1993. 48: p. 6033–6042.

    Article  Google Scholar 

  51. Zou, J., and Balandin, A., Phonon Heat Conduction in a Semiconductor Nanowire. Journal of Applied Physics, 2001. 89(5): p. 2932–2938.

    Article  Google Scholar 

  52. Narumanchi, S.V.J., J.Y. Murthy, and C.H. Amon, Sub-micron Heat Transport Model in Silicon Accounting for Phonon Dispersion and Polarization. ASME J. Heat Transfer,, 2004 (in press).

    Google Scholar 

  53. Ju, Y.S. and K.E. Goodson, Phonon Scattering in Silicon Thin Films with Thickness of Order 100 nm. Applied Physics Letters, 1999. 74(20): p. 3305–3307.

    Article  Google Scholar 

  54. Asheghi, M., Kurabayashi, K., Kasnavi, R., and Goodson, K.E., Thermal Conduction in Doped Single-crystal Silicon Films. Journal of Applied Physics, 2002. 91(8): p. 5079–5088.

    Article  Google Scholar 

  55. Schelling, P.K., S.R. Phillpot, and P. Keblinski, Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity. Physical Review B, 2002. 65: p. 144306/1–12.

    Article  Google Scholar 

  56. Lukes, J.R., D.Y. Li, X.-G. Liang, and C.-L. Tien, Molecular Dynamics Study of Solid Thin-Film Thermal Conductivity. Journal of Heat Transfer, 2000. 122: p. 536–543.

    Article  Google Scholar 

  57. Volz, S.G. and G. Chen, Lattice Dynamic Simulation of Silicon Thermal Conductivity. Physica B, 1999. 263–264: p. 709–712.

    Article  Google Scholar 

  58. Volz, S.G. and G. Chen, Molecular-Dynamics Simulation of Thermal Conductivity of Silicon Crystals. Physical Review B, 2000. 61(4): p. 2651–2656.

    Article  Google Scholar 

  59. Li, J., L.J. Porter, and S. Yip, Atomistic Modeling of Finite-temperature Properties of Crystalline BSiC. II.Thermal Conductivity and Effects of Point Defects. Journal of Nuclear Materials, 1998. 255: p. 139–152.

    Article  Google Scholar 

  60. Gomes, C.J., M. Madrid, and C.H. Amon. Parallel Molecular Dynamics Code Validation Through Bulk Silicon Thermal Conductivity Calculations. in Proceedings of the 2003 ASME International Mechanical Engineering Congress and Exposition, IMECE 2003-42352. 2003. Washington, DC.

    Google Scholar 

  61. Lee, Y.H., R. Biswas, C.M. Soukoulis, C.Z. Wang, C.T. Chan, and K.M. Ho, Molecular-Dynamics Simulation of Thermal Conductivity in Amorphous Silicon. Physical Review B, 1991. 43(8): p. 6573–6580.

    Article  Google Scholar 

  62. Ding, K. and H.C. Andersen, Molecular-Dynamics Simulation of Amorphous Germanium. Physical Review B, 1986. 34(10): p. 6987–6991.

    Article  Google Scholar 

  63. McQuarrie, D.A., Statistical Mechanics. 1976, New York: Harper Collins. 641.

    Google Scholar 

  64. Allen, M.P. and D.J. Tildesley, Computer Simulation of Liquids. 1987, Oxford, UK: Clarendon Press. 385.

    MATH  Google Scholar 

  65. Hardy, R.J., Energy-Flux Operator for a Lattice. Physical Review, 1963. 132(1): p. 168–177.

    Article  MATH  MathSciNet  Google Scholar 

  66. Kubo, R., The Fluctuation-Dissipation Theorem. Report of Progress in Physics, 1966. 29: p. 255–284.

    Article  MATH  Google Scholar 

  67. Frenkel, D. and B. Smit, Understanding Molecular Simulation From Algorithms to Applications. 2nd ed. 2001: Academic Press. p. 638.

    Google Scholar 

  68. Flubacher, P., A.J. Leadbetter, and J.A. Morrison, Philosophical Magazine. 1959. 4: p. 273.

    Google Scholar 

  69. Hultgren, R., Selected Values of Thermodynamic Properties of the Elements. 1973, Metals Park: ASM.

    Google Scholar 

  70. Desai, P.D., Thermodynamic Properties of Iron and Silicon. Journal of Physical and Chemical Reference Data, 1986. 15(3): p. 967–983.

    Article  MathSciNet  Google Scholar 

  71. Ladd, A., B. Moran, and W.G. Hoover, Lattice Thermal Conductivity: A Comparison of Molecular Dynamics and Anharmonic Lattice Dynamics. Physical Review B, 1986. 34: p. 5058–5064.

    Article  Google Scholar 

  72. McGaughey, A.J. and M. Kaviany, Quantitative Validation of the Boltzmann Transport Equation Phonon Thermal Conductivity Model Under the Single-Mode Relaxation Time Approximation. Physical Review B, 2004. 69(9): p. 094303(1)–094303(11).

    Article  Google Scholar 

  73. Dove, M.T., Introduction to Lattice Dynamics. Cambridge Topics in Mineral Physics and Chemistry. 1993: Cambridge University Press.

    Google Scholar 

  74. Ho, C.Y., R.W. Powell, and P.E. Liley, Thermal Conductivity of the Elements. Journal of Physical and Chemical Reference Data, 1972. 1(2): p. 279–421.

    Article  Google Scholar 

  75. Stillinger, F.H. and T.A. Weber, Computer Simulation of Local Order in Condensed Phases of Silicon. Physical Review B, 1985. 31(8): p. 5262–5271.

    Article  Google Scholar 

  76. Srivastava, G.P., The Physics of Phonons, ed. A. Hilger. 1990, New York.

    Google Scholar 

  77. Cahill, D.G., Heat Transport in Dielectric Thin Films and at Solid-Solid Interfaces in: Microscale Energy Transport. Series in Chemical and Mechanical Engineering, ed. C.L. Tien, A. Majumdar, and F.M. Gerner. 1998, Washington, DC: Taylor & Francis.

    Google Scholar 

  78. Chantrenne, P. and J.-L. Barrat, Finite Size Effects in Determination of Thermal Conductivities: Comparing Molecular Dynamics Results with Simple Models. Journal of Heat Transfer, 2004. 126: p. 577–585.

    Article  Google Scholar 

  79. Gomes, C.J., M. Madrid, and C.H. Amon. Thin Film In-Plane Thermal Conductivity Dependence on Molecular Dynamics Surface Boundary Conditions. in Proceedings of the 2004 ASME International Mechanical Engineering Congress and Exposition, IMECE 2004-62264. 2004. Anaheim, CA.

    Google Scholar 

  80. Liu, W. and M. Asheghi, Phonon-Boundary Scattering in Ultrathin Single-Crystal Silicon Layers. Applied Physics Letters, 2004. 84(19): p. 3819–3821.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Amon, C.H., Narumanchi, S., Madrid, M., Gomes, C., Goicochea, J. (2005). Hierarchical Modeling of Thermal Transport from Nano-to-Macroscales. In: Kakaç, S., Vasiliev, L., Bayazitoğlu, Y., Yener, Y. (eds) Microscale Heat Transfer Fundamentals and Applications. NATO Science Series II: Mathematics, Physics and Chemistry, vol 193. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3361-3_20

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3361-3_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3359-9

  • Online ISBN: 978-1-4020-3361-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation