Abstract

Wherever carrots are grown, a variety of diseases reduces both the yield and the market value of the roots. Roots destined for the fresh market must be almost blemish-free; yet, at least three bacteria and twelve fungi cause lesions that reduce their value. Bunching carrots must have damage-free tops as well as roots but foliage, too, is attacked by a large number of pathogens. While tops are not an issue for bulk, cello-packed, or lightly processed carrots (e.g., ‘cut and peel’), healthy tops are critical for harvest since the undercut carrots are often mechanically picked up by the leaves. The presence of heavy infections causes inefficient harvesting and yield losses. Several viruses and phytoplasmas also cause damage to carrots both in the form of malformed roots and direct yield losses of plants. Because of the nature of the carrot root, damage caused by various nematodes is an important limiting factor in carrot production. Some nematodes, for example, have a ‘zero tolerance’ threshold, i.e., the presence of nematodes in soil at the start of the season will result in some crop loss. Various pest control strategies, including cultural practices, such as irrigation management, crop rotation, the production of clean seed, and bed preparation, in addition to chemical disease control, are used to limit economic losses to diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 245.03
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 320.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 320.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams, G.C. and Kropp, B.R. 1996. Athelia arachnoidea, the sexual state of Rhizoctonia carotae, a pathogen of carrot in cold storage. Mycologia, 88:459–472.

    CAS  Google Scholar 

  • Adams, P. B. 1975. Factors affecting survival of of Sclerotinia sclerotiorum in soil. Plant Dis. Rep., 59:599–603.

    Google Scholar 

  • Angell, F. F. and Gabelman, W. H. 1968. Inheritance of resistance in carrot, Daucus carotae var. sativa, to the leafspot fungus, Cercospora carotae. J. Am. Soc. Hort. Sci., 93:434–437.

    Google Scholar 

  • Arthur, J. C. 1934. Manual of the Rusts in United States and Canada. Purdue Research Foundation, Lafayette, IN.

    Google Scholar 

  • Belair, G. 1987. A note on the influence of cultivar, sowing date, and density on damage to carrot caused by Meloidogyne hapla in organic soil. Phytoprotection 68:71–74.

    Google Scholar 

  • Ben-Yephet, Y., Bitton, S. and Greenberger, A. 1986. Control of lettuce drop disease, caused by Sclerotinia sclerotiorum, with metham-sodium soil treatment and foliar applications of benomyl. Plant Path., 35:146–151.

    CAS  Google Scholar 

  • Ben-Yephet, Y., Genizi, A. and Siti, E. 1993. Sclerotial survival and apothecial production by Sclerotinia sclerotiorum following outbreaks of lettuce drop. Phytopathology, 83:509–513.

    Google Scholar 

  • Boekhout, T. 1991. Systematics of Itersonilia: a comparative phenetic study. Mycol. Res., 2:135–146.

    Google Scholar 

  • Braun, U. 1995. The Powdery Mildews (Erysiphales) of Europe. Gustav Fisher Verlag, New York.

    Google Scholar 

  • Carisse, O. and Kushalappa, A. C. 1990. Development of an infection model for Cercospora carotae on carrot based on temperature and leaf wetness duration. Phytopathology, 80:1233–1238.

    Google Scholar 

  • Channon, A. G. 1963. Studies on parsnip canker. I. The causes of the disease. Ann. Appl. Biol., 51:1–15.

    Google Scholar 

  • Constatinescu, O. 1992. The nomenclature of Plasmopara parasitic on Umbelliferae. Mycotaxon, 43:471–477.

    Google Scholar 

  • Dalton, I. P., Epton, A. S. and Bradshaw, N. J. 1981. The susceptibility of modern carrot cultivars to violet root rot caused by Helicobasidium purpureum. J. Hort. Sci., 56:95–96.

    Google Scholar 

  • Davies, W. P. and Lewis, B. G. 1981. Antifungal activity in carrot roots in relation to storage infection by Mycocentrospora acerina (Hartig) Deighton. New Phytol., 89:109–119.

    CAS  Google Scholar 

  • Davies, W. P., Lewis, B. G. and Day, J. R. 1981. Observations on infection of stored carrot roots by Mycocentrospora acerina. Trans. Br. Mycol. Soc., 77:139–151.

    Google Scholar 

  • Davis, R. M. and Nuñez, J. J. 1999. Influence of crop rotation on the incidence of Pythium-and Rhizoctonia-induced carrot root dieback. Plant Dis., 83:146–148.

    Google Scholar 

  • Dillard, H. R., Ludwig, J. W. and Hunter, J. E. 1995. Conditioning of sclerotia of Sclerotinia sclerotiorum for carpogenic germination. Plant Dis., 79:411–415.

    Google Scholar 

  • Dowson, W. J. 1934. Phytophthora megasperma Drechsler in Tasmania. Trans. Brit. Mycol. Soc., 19:89–90.

    Google Scholar 

  • Falk, B. W., Davis, R. M. and Piechocki, M. 1991. Identification of carrot thinleaf virus in California carrots. Plant Dis., 75:319.

    Article  Google Scholar 

  • Farrar, J. J., Nuñez, J. J. and Davis, R. M. 2000. Influence of soil saturation and temperature on Erwinia chrysanthemi soft rot of carrot. Plant Dis., 84:665–668.

    Google Scholar 

  • Gayed, S. K. 1972. Host range and persistence of Thielaviopsis basicola in tobacco soil. Can. J. Plant Sci., 52:869–873.

    Google Scholar 

  • Gillespie, T. J. and Sutton, J. C. 1979. A predictive scheme for timing fungicide applications to control Alternaria leaf blight of carrots. Can. J. Plant Pathol., 1:95:99.

    Google Scholar 

  • Golino, D. A., Oldfield, G. N. and Gumpf, D. J. 1987. Transmission characteristics of the beet leafhopper transmitted virescence agent. Phytopathology, 77:954–957.

    Google Scholar 

  • Goyer, C. and Beaulieu, C. 1997. Host range of Streptomycete strains causing common scab. Plant Dis., 81:901–904.

    Google Scholar 

  • Greco, N. and Brandonisio, A. 1980. Relationship between Heterodera carotae and carrot yield. Nematologica, 26:497–500.

    Article  Google Scholar 

  • Greco, N. and Brandonisio, A. 1986. The biology of Heterodera carotae. Nematologica, 32:447–460.

    Article  Google Scholar 

  • Grisham, M. P. and Anderson, N. A. 1983. Pathogenicity and host specificity of Rhizoctonia solani isolated from carrots. Phytopathology, 73:1564–1569.

    Google Scholar 

  • Groom, M. R. and Perry, D. A. 1985. Induction of cavity spot-like lesions in roots of Daucus carota by Pythium violae. Trans. Brit. Myc. Soc. 84:755–757.

    Article  Google Scholar 

  • Grove, J. F. 1964. Metabolic products of Stemphylium radicinum. Part I. Radicinin. J. Chem. Soc., 1964: 3234–3239.

    Google Scholar 

  • Gurkin, R. S. and Jenkins, S. F. 1985. Influence of cultural practices, fungicides, and inoculum placement on southern blight and Rhizoctonia crown rot of carrot. Plant Dis., 69: 477–481.

    Google Scholar 

  • Hanson, L. E. and Lacy, M. L. 1990. Carrot scab caused by Streptomyces spp. in Michigan. Plant Dis., 74:1037.

    Google Scholar 

  • Hermansen, A. 1992. Weeds as hosts of Mycocentrospora acerina. Ann. Appl. Biol., 121:679–686.

    Google Scholar 

  • Ho, H. H. 1983. Phytophthora porri from stored carrots in Alberta. Mycologia, 75:747–751.

    Google Scholar 

  • Howard, R. J. Pratt, R. G., and Williams, P. H. 1978. Pathogenicity to carrots of Pythium species from organic soils of North America. Phytopathology, 68:1293–1296.

    Google Scholar 

  • Howell, W. E. and Mink, G. I. 1976. Host range, purification, and properties of a flexuous rod-shaped virus isolated from carrot. Phytopathology, 66:949–953.

    Google Scholar 

  • Hutchinson, C. M., McGiffen, M. E., Ohr, H. D. and Sims, J. J. 1999. Evaluation of methyl iodide as a soil fumigant for root-knot nematode control in carrot production. Plant Dis., 83:33–36.

    CAS  Google Scholar 

  • Jenkins, S. F. and Averre, C. W. 1986. Problems and progress in integrated control of southern blight of vegetables. Plant Dis., 70:614–619.

    CAS  Google Scholar 

  • Kendrick, J. B. 1934. Bacterial blight of carrot. J. Agric. Res., 49:493–510.

    Google Scholar 

  • Kuan, T.-L., Minsavage, G. V. and Gabrielson, R. L. 1985. Detection of Xanthomonas campestris pv. carotae in carrot seed. Plant Dis., 69:758–760.

    Google Scholar 

  • Kushalappa, A. C., Boivin, G. and Brodeur, L. 1989. Forecasting incidence thresholds of Cercospora blight in carrots to initiate fungicide application. Plant Dis., 73:979–983.

    Google Scholar 

  • Kuske, C. R., Kirkpatrick, B. C., Davis, M. J. and Seemuller, E. 1991. DNA hybridization between Western aster yellows mycoplasma-like organism plasmids and extrachromosomal DNA from other plant pathogenic mycoplasma-like organisms. Mol. Plant-Microbe Interact., 4:75–80.

    CAS  Google Scholar 

  • Lambert, D. H. 1991. First report of additional hosts for the acid scab pathogen Streptomyces acidiscabies. Plant Dis., 75:750.

    Article  Google Scholar 

  • Langenberg, W. J., Sutton, J. C. and Gillespie, T. J. 1977. Relation of weather variables and periodicities of airborne spores of Alternaria dauci. Phytopathology, 67:879–883.

    Google Scholar 

  • Latham L. J. and Jones, R. A. C. 2000. Yield and quality losses in carrots infected with carrot virus Y. Proceedings of Carrot Conference Australia. E. Davison and A. McKay, eds. Perth, Western Australia.

    Google Scholar 

  • Lee, I.-M. and Davis, R. E. 1988. Detection and investigation of genetic relatedness among aster yellows and other mycoplasma-like organisms by using cloned DNA and RNA probes. Mol. Plant Microbe Interact. 1:303–310.

    Google Scholar 

  • Lewis, B. G., Davies, W. P. and Garrod, B. 1981. Wound healing in carrot roots in relation to infection by Mycocentrospora acerina. Ann. Appl. Biol. 99:35–42.

    Google Scholar 

  • Liddell, C. M., Davis, R. M., Nuñez, J. J. and Guerard, J. P. 1989. Association of Pythium spp. with carrot root dieback in the San Joaquin Valley of California. Plant Dis., 73:246–249.

    Google Scholar 

  • Mahr, S. E. R., Wyman, J. A. and Chapman, R. K. 1993. Variability in aster yellows infectivity of local populations of the aster leafhopper (Homoptera: Cicadelliadae) in Wisconsin. J. Econ. Entomol., 86:1522–1526.

    Google Scholar 

  • Maude, R. B. 1966. Studies on the etiology of black rot, Stemphylium radicinum (Meier, Drechsl., & Eddy) Neerg., and leaf blight, Alternaria dauci (Kuhn) Groves & Skolko, on carrot crops; and on fungicide control of their seed-borne infection phases. Ann. Appl Biol., 57:83–93.

    Google Scholar 

  • Maude, R. B. 1992. Strategies for control of seed-borne Alternaria dauci (leaf blight) of carrots in priming and process engineering systems. Plant Pathol., 41:204–214.

    Google Scholar 

  • Maude, R. B. and Shuring, C. G. 1972. Black rot of carrots, Rep. Nat. Veg. Res. Stn., 20:103.

    Google Scholar 

  • Merriman, P. R., Miriam, P., Harrison, G. and Nancarrow, J. 1979. Survival of sclerotia of Sclerotinia sclerotiorum Soil Biol. Biochem., 11:567–570.

    Article  Google Scholar 

  • Mildenhall, J. P. and Williams, P. H. 1970. Rhizoctonia crown rot and cavity spot of muck-grown carrots. Phytopathology, 60:887–890.

    Article  Google Scholar 

  • Mildenhall, J. P., Pratt, R. G., Williams, P. H. and Mitchell, J. E. 1971. Pythium brown root and forking of muck-grown carrots. Plant Dis. Rep. 55:536–540.

    Google Scholar 

  • Mildenhall, J. P. and Williams, P. H. 1973. Effect of soil temperature and host maturity on infection of carrot by Rhizoctonia solani. Phytopathology, 63:276–280.

    Article  Google Scholar 

  • Moran J., Gibbs, A., van Rijswijk, B., Mackenzie, A., Gibbs, M. and Traicevski, V. 1999. Potyviruses in the cultivated and wild Apiaceae in Australia and the implications for disease control. Australasian Plant Pathological Society Conference Handbook. 12th Biennial Conference, Canberra, Australia.

    Google Scholar 

  • Murant, A. F., Waterhouse, P. M., Raschke, J. H. and Robinson, D. J. 1985. Carrot red leaf and carrot mottle virus: observations on the composition of the particles in single and mixed infections. J. Gen. Virol., 66:1575–1579.

    Article  CAS  Google Scholar 

  • Neergaard, P. and Newhall, A. G. 1951. Notes of the physiology and pathogenicity of Centrospora acerina (Hartig) Newhall. Phytopathology, 41:1021–1033.

    Google Scholar 

  • Palti, J. 1975. Erysiphaceae affecting Umbelliferous crops, with special reference to carrot, in Israel. Phytopath. Medit., 14:87–93.

    Google Scholar 

  • Pryor, B. M., Davis, R. M. and Gilbertson, R. L. 1998. Detection of soilborne Alternaria radicina and its occurrence in California carrot fields. Plant Dis., 82:891–895.

    Google Scholar 

  • Pryor, B. M., Davis, R. M. and Gilbertson, R. L. 1994. Detection and eradication of Alternaria radicina on carrot seed. Plant Dis., 78:452–456.

    Article  CAS  Google Scholar 

  • Pryor, B. M., Davis, R.M. and Gilbertson, R. L. 2000. A toothpick inoculation method for evaluation of carrot cultivars for resistance to Alternaria radicina. HortScience 35:1099–1102.

    Google Scholar 

  • Perry, D.A. and Harrison, J.G. 1979. Cavity spot of carrots. I. Symptomology and calcium involvement. Ann. Appl. Biol., 93:101–108.

    Article  CAS  Google Scholar 

  • Punja, Z. K. 1985. The biology, ecology, and control of Sclerotium rolfsii. Annu. Rev. Phytopathol., 23:97–127.

    CAS  Google Scholar 

  • Punja, Z. K. 1987. Mycelial growth and pathogenesis by Rhizoctonia carotae on carrot. Can. J. Plant Pathol., 9:24–31.

    Article  Google Scholar 

  • Punja, Z. K., Chittaranjan, S. and Gaye, M. M. 1992. Development of black root rot caused by Chalara elegans on fresh market carrots. Can. J. Plant Pathol., 14:299–309.

    Article  Google Scholar 

  • Punja, Z. K. and Gaye, M. M. 1993. Influence of postharvest handling practices and dip treatments on development of black root rot on fresh market carrots. Plant Dis., 77:989–995.

    Article  CAS  Google Scholar 

  • Rader, W. E. 1948. Rhizoctonia carotae n. sp. and Gliocladium aureum n. sp., two new pathogens of carrots in cold storage. Phytopathology, 38:440–452.

    Google Scholar 

  • Ricker, M. D. and Punja, Z. K. 1991. Influence of fungicide and chemical salt dip treatments on crater rot caused by Rhizoctonia carotae in long-term storage. Plant Dis., 75:470–474.

    Article  CAS  Google Scholar 

  • Roberts, P.A. 1987. The influence of planting date of carrot on Meloidogyne incognita reproduction and injury to roots. Nematologica, 33:335–342.

    Article  CAS  Google Scholar 

  • Roberts, P. A., Magyarosy, A. C., Matthews, W. C. and May, D. M. 1988. Effects of metamsodium applied by drip irrigation on root-knot nematodes, Pythium ultimum, and Fusarium sp. in soil and on carrot and tomato roots. Plant Dis., 72:213–217.

    Google Scholar 

  • Santos, P., Nuñez, J. J. and Davis, R. M. 2000. Influence of gibberellic acid on carrot growth and severity of Alternaria leaf blight. Plant Dis., 84:555–558.

    CAS  Google Scholar 

  • Schrandt, J. K., Davis, R. M. and Nuñez. J. J. 1994. Host range and influence of nutrition, temperature, and pH on growth of Pythium violae from carrot. Plant Dis., 78:335–338.

    Article  Google Scholar 

  • Seagall, R. H. and Dow, A. T. 1973. Effects of bacterial contamination and refrigerated storage on bacterial soft rot of carrots. Plant Dis. Rep., 57:896–899.

    Google Scholar 

  • Smith, P. R. 1967. The survival in soil of Itersonilia pastinacae Channon, the cause of parsnip canker. Aust. J. Biol. Sci., 20:647–660.

    Google Scholar 

  • Sondheimer, E. 1957. The isolation and identification of 3-methyl-6-methoxy-8-hydroxy-3, 4-dihydroisocoumarin from carrots. J. Am. Chem. Soc. 79:5036–5039.

    CAS  Google Scholar 

  • Stelfox, D. and Henry, A. W. 1978. Occurrence of rubbery brown rot of stored carrots in Alberta. Canadian Plant Disease Survey 58:87–91.

    Google Scholar 

  • Strandberg, J. O. 1983. Infection and colonization of inflorescences and mericarps of carrot by Alternaria dauci. Plant Dis., 67:1351–1353.

    Google Scholar 

  • Strandberg, J. O. 1988. Establishment of Alternaria leaf blight in controlled environments. Plant Dis., 72:522–526.

    Google Scholar 

  • Strandberg, J. O. and White, J. M. 1979. Effect of soil compaction on carrot roots. J. Am. Soc. Hort. Sci. 104:344–349.

    Google Scholar 

  • Subbarao, K. V. 1998. Progress toward integrated management of lettuce drop. Plant Dis., 82:1068–1078.

    Google Scholar 

  • Towner, D. B. and Beraha, L. 1976. Core-rot: A bacterial disease of carrots. Plant Dis.Rep., 60:357–359.

    Google Scholar 

  • Tylkowska, K. 1992. Carrot seed-borne diseases caused by Alternaria species. In: “Alternaria Biology, Plant Diseases and Metabolites”. (eds. Chelkowski, J. and Visconti, A.), Elsevier Science Publishers, Amsterdam, pp. 337–352

    Google Scholar 

  • Umesh, K. C., Davis, R. M. and Gilbertson, R. L. 1998. Seed contamination thresholds for development of carrot bacterial blight caused by Xanthomonas campestris pv. carotae. Plant Dis. 82:1271–1275.

    Google Scholar 

  • Valder, P. G. 1958. The biology of Helicobasidium purpureum Pat. Trans. Brit. Mycol. Soc., 41: 283–308.

    Article  CAS  Google Scholar 

  • Vivoda, E., Davis, R. M., Nuñez, J. J. and Guerard, J. P. 1991. Factors affecting the development of cavity spot of carrot. Plant Dis., 75:519–522.

    Article  Google Scholar 

  • Vrain, T. C. 1982. Relationship between Meloidogyne hapla density and damage to carrots in organic soils. J. Nematol., 14:50–57.

    PubMed  CAS  Google Scholar 

  • Waterhouse, P. M. and Murant, A. F. 1983. Further evidence on the nature of the dependence of carrot mottle virus on carrot red leaf virus for transmission by aphids. Ann. Appl. Biol., 103:455–464.

    Google Scholar 

  • Watson, M. T. and Falk, B. W. 1994. Ecological and epidemiological factors affecting carrot motley dwarf development in carrots grown in the Salinas Valley of California. Plant Dis., 78:477–481.

    Article  Google Scholar 

  • Watson, M.T., Tian, T., Estabrook, E. and Falk., B. W. 1998. A small RNA identified as a component of California carrot motley dwarf resembles the beet western yellows luteovirus ST9-associated RNA. Phytopatholog, 88:164–170.

    CAS  Google Scholar 

  • White, J. G. 1988. Studies on the biology and control of cavity spot of carrots. Ann. Appl. Biol., 113:259–268.

    Google Scholar 

  • White, J. M. and Strandberg, J. O. 1979. Physical factors affecting carrot root growth: Water saturation of soil. J. Am. Soc. Hort. Sci., 104:414–416.

    Google Scholar 

  • Whitney, N. J. 1954. Investigations of Rhizoctonia crocorum (Pers.) DC in relation to the violet root rot of carrots. Can. J. Bot., 32:679–704.

    Article  Google Scholar 

  • Whitney, N. J. 1956. The control of violet root rot in Ontario. Can. J. Agric. Sci., 36:276–283.

    CAS  Google Scholar 

  • Wilson, M. and Henderson, D. M. 1966. British Rust Fungi. University Press, Cambridge, Great Britain.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Davis, R.M. (2004). Carrot Diseases and their Management. In: Naqvi, S.A.M.H. (eds) Diseases of Fruits and Vegetables Volume I. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2606-4_10

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2606-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1822-0

  • Online ISBN: 978-1-4020-2606-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation