TGFβ-Dependent Epithelial-Mesenchymal Transition

  • Chapter
Rise and Fall of Epithelial Phenotype

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 695 Accesses

Abstract

The transforming growth factor β (TGFβ) is involved in a whole range of biological functions, from cell growth to cell differentiation and apoptosis. The role of TGFβ in epithelial-mesenchymal-transitions (EMTs) has been shown for both embryonic development and tumorigenesis. All three TGFβ mammalian isoforms-TGFβl, TGFβ2 and TGFββcan regulate EMTs, with distinct outcomes depending on the tissue and on the state of cell differentiation. This diversity in the TGFβ response relies on a complex network of signals starting with different sets of TGFβ receptors and subsequently involving distinct TGFβ-dependent pathways. The purpose of this review is to recapitulate the current knowledge on the various signaling pathways—including the Smads, Ras, p38MAPK, RhoA and PI3K-which, upon activation by TGFβ can together give rise to TGFβ—induced EMT phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Moses HL, Serra R. Regulation of differentiation by TGF-beta. Curr Opin Genet Dev 1996; 6:581–6.

    Article  PubMed  CAS  Google Scholar 

  2. Capdevila J, Belmonte JC. Extracellular modulation of the Hedgehog, Wnt and TGF-beta signalling pathways during embryonic development. Curr Opin Genet Dev 1999; 9:427–33.

    Article  PubMed  CAS  Google Scholar 

  3. Massague J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 2000; 103:295–309.

    Article  PubMed  CAS  Google Scholar 

  4. Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 2001; 29:117–29.

    Article  PubMed  CAS  Google Scholar 

  5. Hill CS. TGF-beta signalling pathways in early Xenopus development. Curr Opin Genet Dev 2001; 11:533–40.

    Article  PubMed  CAS  Google Scholar 

  6. Gorelik L, Flavell RA. Transforming growth factor-beta in T-cell biology. Nat Rev Immunol. 2002; 2:46–53.

    Article  PubMed  CAS  Google Scholar 

  7. Moustakas A, Pardali K, Gaal A et al. Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. Immunol Lett 2002; 82:85–91.

    Article  PubMed  CAS  Google Scholar 

  8. Wakefield LM, Roberts AB. TGF-beta signaling: Positive and negative effects on tumorigenesis. Curr Opin Genet Dev 2002; 12:22–9.

    Article  PubMed  CAS  Google Scholar 

  9. Govinden R, Bhoola KD Genealogy, expression, and cellular function of transforming growth factor-beta. Pharmacol Ther 2003; 98:257–65.

    Article  PubMed  CAS  Google Scholar 

  10. Dickson MC, Martin JS, Cousins FM et al. Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 1995; 121:1845–54.

    PubMed  CAS  Google Scholar 

  11. Kaartinen V, Voncken JW, Shuler C et al. Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat Genet 1995; 11:415–21.

    Article  PubMed  CAS  Google Scholar 

  12. Sanford LP, Ormsby I, Gittenberger-de Groot AC et al. TGFbeta2 knockout mice have multiple developmental defects that are nonoverlap** with other TGFbeta knockout phenotypes. Development 1997; 124:2659–70.

    PubMed  CAS  Google Scholar 

  13. Taya Y, O’Kane S, Ferguson MW. Pathogenesis of cleft palate in TGF-beta3 knockout mice. Development 1999; 126:3869–79.

    PubMed  CAS  Google Scholar 

  14. Dunker N, Krieglstein K. Reduced programmed cell death in the retina and defects in lens and cornea of Tgfbeta2(-/-) Tgfbeta3(-/-) double-deficient mice. Cell Tissue Res 2003.

    Google Scholar 

  15. Schmid P, Cox D, Bilbe G et al. Differential expression of TGF beta 1, beta 2 and beta 3 genes during mouse embryogenesis. Development 1991; 111:117–30.

    PubMed  CAS  Google Scholar 

  16. Wrana JL. Regulation of Smad activity. Cell 2000; 100:189–92.

    Article  PubMed  CAS  Google Scholar 

  17. Moustakas A, Souchelnytskyi S, Heldin CH. Smad regulation in TGF-beta signal transduction. J Cell Sci 2001; 114:4359–69.

    PubMed  CAS  Google Scholar 

  18. Shi Y, Massague J. Mechanisms of tgf-Beta signaling from cell membrane to the nucleus. Cell 2003; 113:685–700.

    Article  PubMed  CAS  Google Scholar 

  19. Yamaguchi K, Nagai S, Ninomiya-Tsuji J et al. XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO J 1999; 18:179–87.

    Article  PubMed  CAS  Google Scholar 

  20. Behrens J. Cross-regulation of the Wnt signalling pathway: A role of MAP kinases. J Cell Sci 2000; 113 (Pt 6):911–9.

    PubMed  CAS  Google Scholar 

  21. Massague J. How cells read TGF-beta signals. Nat Rev Mol Cell Biol 2000; 1:169–78.

    Article  PubMed  CAS  Google Scholar 

  22. Hanafusa H, Ninomiya-Tsuji J, Masuyama N et al. Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-beta-induced gene expression. J Biol Chem 1999; 274:27161–7.

    Article  PubMed  CAS  Google Scholar 

  23. Bakin AV, Tomlinson AK, Bhowmick NA et al. Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 2000; 275:36803–10.

    Article  PubMed  CAS  Google Scholar 

  24. Akhurst RJ, Derynck R. TGF-beta signaling in cancer—a double-edged sword. Trends Cell Biol 2001; 11:S44–51.

    PubMed  CAS  Google Scholar 

  25. Dumont N, Arteaga CL. Targeting the TGFbeta signaling network in human neoplasia. Cancer Cell 2003; 3:531–6.

    Article  PubMed  CAS  Google Scholar 

  26. De Larco JE, Todaro GJ. Growth factors from murine sarcoma virus-transformed cells. Proc Natl Acad Sci USA 1978; 75:4001–5.

    Article  PubMed  Google Scholar 

  27. Frolik CA, Dart LL, Meyers CA et al. Purification and initial characterization of a type beta trans forming growth factor from human placenta. Proc Natl Acad Sci USA 1983; 80:3676–80.

    Article  PubMed  CAS  Google Scholar 

  28. Assoian RK, Komoriya A, Meyers CA et al. Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem 1983; 258:7155–60.

    PubMed  CAS  Google Scholar 

  29. Dumont N, Arteaga CL. Transforming growth factor-beta and breast cancer: Tumor promoting effects of transforming growth factor-beta. Breast Cancer Res 2000; 2:125–32.

    Article  PubMed  CAS  Google Scholar 

  30. Miettinen PJ, Ebner R, Lopez AR et al. TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: Involvement of type I receptors. J Cell Biol 1994; 127:2021–36.

    Article  PubMed  CAS  Google Scholar 

  31. Cui W, Fowlis DJ, Bryson S et al. TGFbeta1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 1996; 86:531–42.

    Article  PubMed  CAS  Google Scholar 

  32. Bhowmick NA, Ghiassi M, Bakin A et al. Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 2001; 12:27–36.

    PubMed  CAS  Google Scholar 

  33. Oft M, Heider KH, Beug H. TGFbeta signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol 1998; 8:1243–52.

    Article  PubMed  CAS  Google Scholar 

  34. Potts JD, Runyan RB. Epithelial-mesenchymal cell transformation in the embryonic heart can be mediated, in part, by transforming growth factor beta. Dev Biol 1989; 134:392–401.

    Article  PubMed  CAS  Google Scholar 

  35. Proetzel G, Pawlowski SA, Wiles MV et al. Transforming growth factor-beta 3 is required for secondary palate fusion. Nat Genet 1995; 11:409–14.

    Article  PubMed  CAS  Google Scholar 

  36. Brown CB, Boyer AS, Runyan RB et al. Requirement of type III TGF-beta receptor for endocardial cell transformation in the heart. Science 1999; 283:2080–2.

    Article  PubMed  CAS  Google Scholar 

  37. Boyer AS, Ayerinskas, II, Vincent EB et al. TGFbeta2 and TGFbeta3 have separate and sequential activities during epithelial-mesenchymal cell transformation in the embryonic heart. Dev Biol 1999; 208:530–45.

    Article  PubMed  CAS  Google Scholar 

  38. Morabito CJ, Dettman RW, Kattan J et al. Positive and negative regulation of epicardial-mesenchymal transformation during avian heart development. Dev Biol 2001; 234:204–15.

    Article  PubMed  CAS  Google Scholar 

  39. Camenisch TD, Molin DG, Person A et al. Temporal and distinct TGFbeta ligand requirements during mouse and avian endocardial cushion morphogenesis. Dev Biol 2002; 248:170–81.

    Article  PubMed  CAS  Google Scholar 

  40. Boyer AS, Runyan RB. TGFbeta Type III and TGFbeta Type II receptors have distinct activities during epithelial-mesenchymal cell transformation in the embryonic heart. Dev Dyn 2001; 221:454–9.

    Article  PubMed  CAS  Google Scholar 

  41. Lai YT, Beason KB, Brames GP et al. Activin receptor-like kinase 2 can mediate atrioventricular cushion transformation. Dev Biol 2000; 222:1–11.

    Article  PubMed  CAS  Google Scholar 

  42. Piek E, Moustakas A, Kurisaki A et al. TGF-(beta) type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J Cell Sci 1999; 112 (Pt 24):4557–68.

    PubMed  CAS  Google Scholar 

  43. Oft M, Peli J, Rudaz C et al. TGF-betal and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev 1996; 10:2462–77.

    Article  PubMed  CAS  Google Scholar 

  44. Oft M, Akhurst RJ, Balmain A. Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nat Cell Biol 2002; 4:487–94.

    Article  PubMed  CAS  Google Scholar 

  45. Bakin AV, Rinehart C, Tomlinson AK et al. p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration. J Cell Sci 2002; 115:3193–206.

    PubMed  CAS  Google Scholar 

  46. Yu L, Hebert MC, Zhang YE. TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. EMBO J 2002; 21:3749–59.

    Article  PubMed  CAS  Google Scholar 

  47. Bhowmick NA, Zent R, Ghiassi M et al. Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38MAPK and epithelial plasticity. J Biol Chem 2001; 276:46707–13.

    Article  PubMed  CAS  Google Scholar 

  48. Muraoka RS, Dumont N, Ritter CA et al. Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 2002; 109:1551–9.

    Article  PubMed  CAS  Google Scholar 

  49. Grille SJ, Bellacosa A, Upson J et al. The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res 2003; 63:2172–8.

    PubMed  CAS  Google Scholar 

  50. Bates RC, Mercurio AM. Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Mol Biol Cell 2003; 14:1790–800.

    Article  PubMed  CAS  Google Scholar 

  51. Nakajima Y, Yamagishi T, Hokari S et al. Mechanisms involved in valvuloseptal endocardial cushion formation in early cardiogenesis: Roles of transforming growth factor (TGF)-beta and bone morphogenetic protein (BMP). Anat Rec 2000; 258:119–27.

    Article  PubMed  CAS  Google Scholar 

  52. Zeisberg M, Hanai J, Sugimoto H et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 2003; 9:964–8.

    Article  PubMed  CAS  Google Scholar 

  53. Grande M, Franzen A, Karlsson JO et al. Transforming growth factor-beta and epidermal growth factor synergistically stimulate epithelial to mesenchymal transition (EMT) through a MEK-dependent mechanism in primary cultured pig thyrocytes. J Cell Sci 2002; 115:4227–36.

    Article  PubMed  CAS  Google Scholar 

  54. Janda E, Lehmann K, Killisch I et al. Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: Dissection of Ras signaling pathways. J Cell Biol 2002; 156:299–313.

    Article  PubMed  CAS  Google Scholar 

  55. Lehmann K, Janda E, Pierreux CE et al. Raf induces TGFbeta production while blocking its apoptotic but not invasive responses: A mechanism leading to increased malignancy in epithelial cells. Genes Dev 2000; 14:2610–22.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Vignais, ML., Fafet, P. (2005). TGFβ-Dependent Epithelial-Mesenchymal Transition. In: Rise and Fall of Epithelial Phenotype. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-28671-3_15

Download citation

Publish with us

Policies and ethics

Navigation