Abstract

In this chapter, we provide a broad overview of the most representative multicriteria location problems as well as of the most relevant achievements in this field, indicating the relationship between them whenever possible. We consider a large number of references which have been classified in three sections depending on the type of decision space where the analyzed models are stated. Therefore, we distinguish between continuous, network, and discrete multicriteria location problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 255.73
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M.F. Abu-Taleb. Application of multicriteria analysis to the design of wastewater treatment in a nationally protected area. Environmental Engineering and Policy, 2:37–46, 2000.

    Google Scholar 

  2. A.A. Aly, D.C. Kay, and D.W. Litwhiler. Location dominance on spherical surfaces. Operations Research, 27(5):972–981, 1979.

    MathSciNet  Google Scholar 

  3. A.A. Aly and B. Rahali. Analysis of a bicriteria location model. Naval Research Logistics Quarterly, 37:937–944, 1990.

    MathSciNet  Google Scholar 

  4. I. Averbakh and O. Berman. Algorithms for path medi-centers of a tree. Computers and Operations Research, 26:1395–1409, 1999.

    Article  MathSciNet  Google Scholar 

  5. M.A. Badri, A.K. Mortagy, and C.A. Alsayed. A multiobjective model for locating fire stations. European Journal of Operational Research, 110:243–260, 1998.

    Article  Google Scholar 

  6. M. Baronti and E. Casini. Simpson points in normed spaces. Rivista di Matematica della Universita di Parma, 5(5): 103–107, 1996.

    MathSciNet  Google Scholar 

  7. M.A. Benito-Alonso and P. Devaux. Location and size of day nurseries-a multiple goal approach. European Journal of Operational Research, 6:195–198, 1981.

    Google Scholar 

  8. O. Berman. Mean-variance location problems. Transportation Science, 24(4):287–293, 1990.

    MATH  MathSciNet  Google Scholar 

  9. O. Berman and E.H. Kaplan. Equity maximizing facility location schemes. Transportation Science, 24(2): 137–144, 1990.

    MathSciNet  Google Scholar 

  10. U. Bhattacharya, J.R. Rao, and R.N. Tiwari. Bi-criteria multi facility location problem in fuzzy environment. Fuzzy Sets and Systems, 56:145–153, 1993.

    Article  MathSciNet  Google Scholar 

  11. U. Bhattacharya and R. N. Tiwari. Multi-objective multiple facility location problem: A fuzzy interactive approach. Journal of Fuzzy Mathematics, 4:483–490, 1996.

    MathSciNet  Google Scholar 

  12. G.R. Bitran and K.D. Lawrence. Location service offices: a multicriteria approach. OMEGA, 8(2):201–206, 1980.

    Article  Google Scholar 

  13. G.R. Bitran and J.M. Rivera. A combined approach to solve binary multicriteria problems. Naval Research Logistics Quarterly, 29(2): 181–200, 1982.

    MathSciNet  Google Scholar 

  14. R. Blanquero and E. Carrizosa. A d.c. biobjective location model. Journal of Global Optimization, 23:139–154, 2002.

    Article  MathSciNet  Google Scholar 

  15. M.L. Brandeau and S.S. Chiu. An overview of representative problems in location research. Management Science, 35(6):645–674, 1989.

    MathSciNet  Google Scholar 

  16. J. Brimberg and H. Juel. A bicriteria model for locating a semi-desirable facility in the plane. European Journal of Operational Research, 106:144–151, 1998.

    Article  Google Scholar 

  17. H.U. Buhl. Axiomatic considerations in multi-objective location theory. European Journal of Operational Research, 37:363–367, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  18. R.E. Burkard, J. Krarup, and P.M. Pruzan. Efficiency and optimality in minisum-minimax 0-1 programming problems. Journal of the Operational Research Society, 33:137–151, 1982.

    MathSciNet  Google Scholar 

  19. C.M. Campos and J.A. Moreno. Relaxation of the condorcet and simpson conditions in voting location. European Journal of Operational Research, 145:673–683, 2003.

    MathSciNet  Google Scholar 

  20. E. Carrizosa, E. Conde, F.R. Fernández, and J. Puerto. Efficiency in euclidean constrained location problems. Operations Research Letters, 14:291–295, 1993.

    Article  MathSciNet  Google Scholar 

  21. E. Carrizosa, E. Conde, F.R. Fernández, and J. Puerto. An axiomatic approach to the cent-dian criterion. Location Science, 2:165–171, 1994.

    Google Scholar 

  22. E. Carrizosa, E. Conde, M. Muñoz-Márquez, and J. Puerto. Planar point-objective location problems with nonconvex constraints: A geometrical construction. Journal of Global Optimization, 6:77–86, 1995.

    Article  Google Scholar 

  23. E. Carrizosa, E. Conde, M. Muñoz-Márquez, and J. Puerto. Simpson points in planar problems with locational constraints. The polyhedral-gauge case. Mathematics of Operations Research, 22:291–300, 1997.

    MathSciNet  Google Scholar 

  24. E. Carrizosa, E. Conde, M. Muñoz-Márquez, and J. Puerto. Simpson points in planar problems with locational constraints. The round-norm case. Mathematics of Operations Research, 22:276–290, 1997.

    MathSciNet  Google Scholar 

  25. E. Carrizosa, E. Conde, and M.D. Romero-Morales. Location of a semiobnoxious facility. A biobjective approach. In R. Caballero, F. Ruiz, and R.E. Steuer, editors, Advances in Multiple Objective and Goal Programming, volume 455 of Lecture Notes in Economics and Mathematical Systems, pages 338–346. Springer Verlag, Berlin, 1997.

    Google Scholar 

  26. E. Carrizosa and F.R. Fernández. The efficient set in location problems with mixed norms. Trabajos en Investigación Operativa, 6:61–69, 1991.

    Google Scholar 

  27. E. Carrizosa and F.R. Fernández. A polygonal upper bound for the efficient set for single-facility location problems with mixed norms. TOP, 1(1):107–116, 1993.

    Google Scholar 

  28. E. Carrizosa, F.R. Fernández, and J. Puerto. Determination of a pseudoefficient set for single-location problem with polyhedral mixed norms. In F. Orban-Ferauge and J.P. Rasson, editors, Proceedings of the Meeting V of the EURO Working Group on Locational Analysis, pages 27–39, 1990.

    Google Scholar 

  29. E. Carrizosa and F. Plastria. A characterization of efficient points in constrained location problems with regional demand. Operations Research Letters, 19:129–134, 1996.

    Article  MathSciNet  Google Scholar 

  30. E. Carrizosa and F. Plastria. Location of semi-obnoxious facilities. Studies in Locational Analysis, 12:1–27, 1999.

    MathSciNet  Google Scholar 

  31. E. Carrizosa and F. Plastria. Dominators for multiple-objective quasiconvex maximization problems. Journal of Global Optimization, 18:35–58, 2000.

    MathSciNet  Google Scholar 

  32. L. G. Chalmet and S. Lawphongpanich. Efficient solutions for point-objective discrete facility location problems. In Organizations: Multiple Agents with Multiple Criteria, volume 190 of Lecture Notes in Economics and Mathematical Systems, pages 56–71. Springer Verlag, Berlin, 1981.

    Google Scholar 

  33. L.G. Chalmet. Efficiency in Minisum Rectilinear Distance Location Problems, pages 431–445. North Holland, Amsterdam, 1983.

    Google Scholar 

  34. L.G. Chalmet, R.L. Francis, and A. Kolen. Finding efficient solutions for rectilinear distance location problems efficiently. European Journal of Operational Research, 6:117–124, 1981.

    Article  MathSciNet  Google Scholar 

  35. L.G. Chalmet, R.L. Francis, and J.F. Lawrance. Efficiency in integral facility design problems. Journal of Optimization Theory and Applications, 32(2): 135–149, 1980.

    Article  MathSciNet  Google Scholar 

  36. L.G. Chalmet, R.L. Francis, and J.F. Lawrance. On characterizing supremum and ιp-efficient facility designs. Journal of Optimization Theory and Applications, 35(1):129–141, 1981.

    Article  MathSciNet  Google Scholar 

  37. D. Chhajed and V. Chandru. Hulls and efficient sets for the rectilinear norm. ORSA Journal of Computing, 7:78–83,1995.

    Google Scholar 

  38. M. Colebrook, M.T. Ramos, J. Sicilia, and R.M. Ramos. Efficient points in the biobjective cent-dian problem. Studies in Locational Analysis, 15:1–16, 2000.

    MathSciNet  Google Scholar 

  39. J. Current, H. Min, and D. Schilling. Multiobjective analysis of facility location decisions. European Journal of Operational Research, 49:295–307, 1990.

    Article  Google Scholar 

  40. M.S. Daskin. Network and Discrete Location. Models, Algorithms and Applications. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley & Sons, Chichester, 1995.

    Google Scholar 

  41. Z. Drezner. On location dominance on spherical surfaces. Operations Research, 29(6):1218–1219, 1981.

    MATH  MathSciNet  Google Scholar 

  42. Z. Drezner, editor. Facility Location. A Survey of Applications and Methods. Springer Series in Operations Research. Springer Verlag, New York, 1995.

    Google Scholar 

  43. Z. Drezner and A.J. Goldman. On the set of optimal points to the Weber problem. Transportation Science, 25:3–8, 1991.

    MathSciNet  Google Scholar 

  44. Z. Drezner and H.W. Hamacher, editors. Facility Location. Aplications and Theory. Springer, New York, 2002.

    Google Scholar 

  45. R. Durier. Meilleure approximation en norme vectorielle et théorie de la localisation. Mathematical Modelling and Numerical Analysis — Modélisation Mathématique et Analyse Numérique, 21:605–626, 1987.

    MATH  MathSciNet  Google Scholar 

  46. R. Durier. Continuous location theory under majority rule. Mathematics of Operations Research, 14(2):258–274, 1989.

    MATH  MathSciNet  Google Scholar 

  47. R. Durier. On pareto optima, the fermat-weber problem and polyhedral gauges. Mathematical Programming, 47:65–79, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  48. R. Durier and C. Michelot. Sets of efficient points in a normed space. Journal of Mathematical Analysis and Applications, 117:506–528, 1986.

    Article  MathSciNet  Google Scholar 

  49. R. Durier and C. Michelot. On the set of optimal points to the weber problem: Further results. Transportation Science, 28:141–149, 1994.

    MathSciNet  Google Scholar 

  50. M. Ehrgott. Multicriteria Optimization, volume 491 of Lecture Notes in Economics and Mathematical Systems. Springer Verlag, Berlin, 2000.

    Google Scholar 

  51. M. Ehrgott and X. Gandibleaux, editors. Multiple Criteria Optimization. State of the Art Annotated Bibliographic Surveys, volume 52 of International Series in Operations Research and Management Science. Kluwer Academic Publishers, Boston, 2002.

    Google Scholar 

  52. M. Ehrgott, H.W. Hamacher, and S. Nickel. Geometric methods to solve max-ordering location problems. Discrete Applied Mathematics, 93:3–20, 1999.

    Article  MathSciNet  Google Scholar 

  53. M. Ehrgott and A. Rau. Bicriteria costs versus service analysis of a distribution network — A case study. Journal of Multi-Criteria Decision Analysis, 8:256–267, 1999.

    Article  Google Scholar 

  54. I. Ekeland. On the variational principle. Journal of Mathematical Analysis and Applications, 47:324–353, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  55. J. Elzinga and D.W. Hearn. Geometrical solutions for some minimax location problems. Transportation Science, 6:379–394, 1972.

    MathSciNet  Google Scholar 

  56. E. Erkut. Inequality measures for location problems. Location Science, 1(3):199–217, 1993.

    MATH  MathSciNet  Google Scholar 

  57. E. Erkut and S. Neuman. A multiobjective model for locating undesirable facilities. Annals of Operations Research, 40:209–227, 1992.

    Article  Google Scholar 

  58. E. Fernández and J. Puerto. Multiobjective solution of the uncapacitated plant location problem. European Journal of Operational Research, 145(3):509–529, 2003.

    MathSciNet  Google Scholar 

  59. F.R. Fernández, S. Nickel, J. Puerto, and A.M. Rodríguez-Chía. Robustness in the Pareto-solutions for the multi-criteria minisum location problem. Journal of Multi-Criteria Decision Analysis, 10:191–203, 2001.

    Google Scholar 

  60. P. Fernández, B. Pelegrín, and J. Fernández. Location of paths on trees with minimal eccentricity and superior section. TOP, 6:223–246, 1998.

    MathSciNet  Google Scholar 

  61. J. Fliege. A note on “On Pareto optima, the Fermat-Weber problem, and polyhedral gauges”. Mathematical Programming, 84:435–438, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  62. R.L. Francis and A.V. Cabot. Properties of a multifacility location problem involving euclidean distances. Naval Research Logistics Quartely, 19:335–353, 1972.

    MathSciNet  Google Scholar 

  63. R.L. Francis, L.F. McGinnis, and J.A. White. Locational analysis. European Journal of Operational Research, 12(3):220–252, 1983.

    Article  MathSciNet  Google Scholar 

  64. R.L. Francis, L.F. McGinnis, and J. A. White. Facility Layout and Location: An Analytical Approach. Prentice Hall, Englewood Cliffs, 1992.

    Google Scholar 

  65. A.M. Geoffrion. Proper efficiency and the theory of vector maximization. Journal of Mathematical Analysis and Applications, 22:618–630, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  66. I. Giannikos. A multiobjective programming model for locating treatment sites and routing hazardous wastes. European Journal of Operational Research, 104:333–342, 1998.

    Article  MATH  Google Scholar 

  67. P. Haastrup, V. Maniezzo, M. Mattarelli, F. Mazzeo, I. Mendes, and M. Paruccini. A decision support system for urban waste management. European Journal of Operational Research, 109:330–341, 1998.

    Article  Google Scholar 

  68. S.L. Hakimi. Optimum locations of switching centers and the absolute centers and medians of a graph. Operations Research, 12:450–459, 1964.

    MATH  Google Scholar 

  69. J. Halpern. The location of a centdian convex combination on a undirected tree. Journal of Regional Science, 16:237–245, 1976.

    Google Scholar 

  70. J. Halpern. Finding minimal center-median convex combination (cent-dian) of a graph. Management Science, 16:534–544, 1978.

    Google Scholar 

  71. J. Halpern. Duality in the cent-dian of a graph. Operations Research, 28:722–735, 1980.

    MATH  Google Scholar 

  72. H. W. Hamacher, H. Hennes, J. Kalcsics, and S. Nickel. LoLA — Library of Location Algorithms, Version 2.1, 2003. http://www.itwm.fhg.de/opt/projects/lola.

    Google Scholar 

  73. H. W. Hamacher and S. Nickel. Classification of location models. Location Science, 6:229–242, 1998.

    Article  Google Scholar 

  74. H.W. Hamacher, M. Labbé, and S. Nickel. Multicriteria network location problems with sum objectives. Networks, 33:79–92, 1999.

    Article  MathSciNet  Google Scholar 

  75. H.W. Hamacher, M. Labbé, S. Nickel, and A.J.V. Skriver. Multicriteria semi-obnoxious network location problems (MSNLP) with sum and center objectives. Annals of Operations Research, 110:33–53, 2002.

    Article  MathSciNet  Google Scholar 

  76. H.W. Hamacher and S. Nickel. Multicriteria planar location problems. European Journal of Operational Research, 94:66–86, 1996.

    Article  Google Scholar 

  77. G.Y. Handler. Medi-centers of a tree. Transportation Science, 19:246–260, 1985.

    MATH  MathSciNet  Google Scholar 

  78. P. Hansen, M. Labbé, and J.F. Thisse. From the median to the generalized center. RAIRO Recherche Operationelle, 25:73–86, 1991.

    Google Scholar 

  79. P. Hansen, J. Perreur, and J.F. Thisse. Location theory, dominance, and convexity: Some further results. Operations Research, 28:1241–1250, 1980.

    Google Scholar 

  80. P. Hansen, J.-F. Thisse, and R.E. Wendell. Efficient points on a network. Networks, 16(4):357–368, 1986.

    MathSciNet  Google Scholar 

  81. P. Hansen and J.F. Thisse. The generalized Weber-Rawls problem. In J.L. Brans, editor, Operational Research’ 81 (Hamburg, 1981), pages 569–577. North-Holland, Amsterdam, 1981.

    Google Scholar 

  82. E.G. Henkel and C. Tammer. ε-variational inequalities for vector approximation problems. Optimization, 38:11–21, 1996.

    MathSciNet  Google Scholar 

  83. O. Hudec and K. Zimmermann. Biobjective center-balance graph location model. Optimization, 45:107–115, 1999.

    MathSciNet  Google Scholar 

  84. A.P. Hurter, M.K. Shaeffer, and R.E. Wendell. Solutions of constrained location problems. Management Science, 22:51–56, 1975.

    MathSciNet  Google Scholar 

  85. M.P. Johnson. A spatial decision support system prototype for housing mobility program planning. Journal of Geographical Systems, 3:49–67, 2001.

    MATH  ADS  Google Scholar 

  86. H. Juel and R. Love. Hull properties in location problems. European Journal of Operational Research, 12:262–265, 1983.

    Article  MathSciNet  Google Scholar 

  87. O. Kariv and S.L. Hakimi. An algorithm approach to network location problems I. The p-centers. SIAM Journal of Applied Mathematics, 37:513–538, 1979.

    MathSciNet  Google Scholar 

  88. K. Klamroth and M.M. Wiecek. A bi-objective median location problem with a line barrier. Operations Research, 50:670–679, 2002.

    Article  MathSciNet  Google Scholar 

  89. R. Lahdelma, P. Salminen, and J. Hokkanen. Locating a waste treatment facility by using stochastic multicriteria acceptability analysis with ordinal criteria. European Journal of Operational Research, 142:345–356, 2002.

    Article  Google Scholar 

  90. S.M. Lee, G.I. Green, and C.S. Kim. A multiple criteria model for the location-allocation problem. Computers & Operations Research, 8:1–8, 1981.

    Article  Google Scholar 

  91. G.S. Liang and M.J.J. Wang. A fuzzy multi-criteria decision-making method for facility site selection. International Journal of Product Resources, 11:2313–2330, 1991.

    Google Scholar 

  92. M.C. López-Mozos and J.A. Mesa. Location of cent-dian path in tree graphs. In J.A. Moreno, editor, Proceeding of Meeting VI of the EURO Workking Group on Location Analysis, number 34 in Serie Informes, pages 135–144. Secretariado de Publicaciones de la Universidad de la Laguna, 1992.

    Google Scholar 

  93. R.F. Love, J.G. Morris, and G.O. Wesolowsky. Facilities Location. Models and Methods. North Holland Publishing Company, 1988.

    Google Scholar 

  94. T.J. Lowe. Efficient solutions in multiobjective tree network location problems. Transportation Science, 12:298–316, 1978.

    MathSciNet  Google Scholar 

  95. T.J. Lowe, J.F. Thisse, J.E. Ward, and R.E. Wendell. On efficient solutions to multiple objective mathematical programs. Management Science, 30:1346–1349, 1984.

    MathSciNet  Google Scholar 

  96. J. Malczewki and W. Ogryczak. The multiple criteria location problem: 1. A generalized network model and the set of efficient solutions. Environment and Planning, A27:1931–1960, 1995.

    Google Scholar 

  97. J. Malczewki and W. Ogryczak. The multiple criteria location problem: 2. Preferencebased techniques and interactive decision support. Environment and Planning, A28:69–98, 1996.

    Google Scholar 

  98. M.B. Mandell. Modelling effectiveness-equity trade-offs in public service delivery systems. Management Science, 37:467–482, 1991.

    Google Scholar 

  99. M.T. Marsh and D.A. Schilling. Equity measurement in facility location analysis: A review and framework. European Journal of Operational Research, 74(1):1–17, 1994.

    Article  Google Scholar 

  100. J.A. Mesa and T.B. Boffey. A review of extensive facility location in networks. European Journal of Operational Research, 95:592–603, 1996.

    Article  Google Scholar 

  101. C. Michelot. Localization in multifacility location theory. European Journal of Operational Research, 31:177–184, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  102. R.L. Morrill and J. Symons. Efficiency and equity aspects of optimum location. Geographical Analysis, 9:215–225, 1977.

    Google Scholar 

  103. G.F. Mulligan. Equity measures and facility location. Papers in Regional Science, 70:345–365, 1991.

    Article  Google Scholar 

  104. Y.S. Myung, H.G. Kim, and D.W. Tcha. A bi-objective uncapacitated facility location problem. European Journal of Operational Research, 100:608–616, 1997.

    Article  Google Scholar 

  105. M. Ndiaye and C. Michelot. Efficiency in constrained continuous location. European Journal of Operational Research, 104:288–298, 1998.

    Article  Google Scholar 

  106. S. Nickel. Discretization of Planar Location Problems. Shaker Verlag, Aachen, 1995.

    Google Scholar 

  107. S. Nickel. Bicriteria and restricted 2-facility Weber problems. Mathematical Methods of Operations Research, 45:167–195, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  108. S. Nickel and J. Puerto. A unified approach to network location problems. Networks, 34:283–290, 1999.

    Article  MathSciNet  Google Scholar 

  109. S. Nickel, J. Puerto, A.M. Rodríguez-Chía, and A. Weissler. General continuous multicriteria location problems. Technical report, University of Kaiserslautern, Department of Mathematics, 1997.

    Google Scholar 

  110. W. Ogryczak. On cent-dians of general networks. Location Science, 5:15–28, 1997.

    Article  MATH  Google Scholar 

  111. W. Ogryczak. On the lexicographic minimax approach to location problems. European Journal of Operational Research, 100:566–585, 1997.

    Article  MATH  Google Scholar 

  112. W. Ogryczak. On the distribution approach to location problems. Computers & Industrial Engineering, 37:595–612, 1999.

    Article  Google Scholar 

  113. W. Ogryczak. Inequality measures and equitable approaches to location problems. European Journal of Operational Research, 122(2):374–391, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  114. W. Ogryczak, K. Studzinski, and K. Zorychta. A solver for the multiobjective transshioment problem with facility location. European Journal of Operational Research, 43:53–64, 1989.

    Article  Google Scholar 

  115. Y. Ohsawa. A geometrical solution for quadratic bicriteria location models. European Journal of Operational Research, 114:380–388, 1999.

    Article  MATH  Google Scholar 

  116. Y. Ohsawa. Bicriteria euclidean location associated with maximin and minimax criteria. Naval Research Logistics Quarterly, 47:581–592, 2000.

    MATH  MathSciNet  Google Scholar 

  117. B. Pelegrín and F. R. Fernández. Determination of efficient points in multiple-objective location problems. Naval Research Logistics, 35:697–705, 1988.

    MathSciNet  Google Scholar 

  118. B. Pelegrín and F. R. Fernández. Determination of efficient solutions for point-objective locational decision problems. Annals of Operations Research, 18:93–102, 1989.

    MathSciNet  Google Scholar 

  119. D. Pérez-Brito, J.A. Moreno-Pérez, and I. Rodríguez-Martín. Finite dominating set for the p-facility cent-dian network locating problem. Studies in Locational Analysis, 11:27–40, 1997.

    Google Scholar 

  120. D. Pérez-Brito, J.A. Moreno-Pérez, and I. Rodríguez-Martín. The 2-facility centdian network problem. Location Science, 6:369–381, 1998.

    Google Scholar 

  121. F. Plastria. Continuous Location Problems and Cutting Plane Algorithms. PhD thesis, Vrije Universiteit Brussel, Brussel 1983.

    Google Scholar 

  122. F. Plastria. Localization in single facility location. European Journal of Operational Research, 18:215–219, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  123. J. Puerto. Lecturas en Teoría de Localización. Universidad de Sevilla. Secretariado de Publicaciones, 1996.

    Google Scholar 

  124. J. Puerto and F.R. Fernández. A convergent approximation scheme for efficient sets of the multi-criteria weber location problem. TOP, 6:195–202, 1998.

    MathSciNet  Google Scholar 

  125. J. Puerto and F.R. Fernández. Multi-criteria minisum facility location problems. Journal of Multi-Criteria Decision Analysis, 8:268–280, 1999.

    Article  Google Scholar 

  126. J. Puerto and F.R. Fernández. Geometrical properties of the symmetrical single facility location problem. Journal of Nonlinear and Convex Analysis, 1(3):321–342, 2000.

    MathSciNet  Google Scholar 

  127. R.M. Ramos, M.T. Ramos, M. Colebrook, and J. Sicilia. Locating a facility on a network with multiple median-type objectives. Annals of Operations Research, 86:221–235, 1999.

    Article  MathSciNet  Google Scholar 

  128. R.M. Ramos, J. Sicilia, and M.T. Ramos. The biobjective absolute center problem. TOP, 5(2):187–199, 1997.

    MathSciNet  Google Scholar 

  129. K. Ravindranath, P. Vrat, and N. Singh. Bicriteria single facility rectilinear location problems in the presence of a single forbidden region. Operations Research, 22:1–16, 1985.

    Google Scholar 

  130. A.M. Rodríguez-Chía. Advances on the Continuous Single Facility Location Problem. PhD thesis, Universidad de Seville, 1998.

    Google Scholar 

  131. A.M. Rodríguez-Chía and J. Puerto. Geometrical description of the weakly efficient solution set for constrained multicriteria location problems. Technical report, Facultad de Matematicas, Universidad de Sevilla, 2002.

    Google Scholar 

  132. A.M. Rodríguez-Chía and J. Puerto. Geometrical description of the weakly efficient solution set for multicriteria location problem. Annals of Operations Research, 111:179–194, 2002.

    Google Scholar 

  133. G.T. Ross and R.M. Soland. A multicriteria approach to the location of public facilities. European Journal of Operational Research, 4:307–321, 1980.

    MathSciNet  Google Scholar 

  134. A.J.V. Skriver and K.A. Andersen. The bicriterion semi-obnoxious location (BSL) problem solved by an ε-approximation. European Journal of Operational Research, 146:517–528, 2003.

    Article  MathSciNet  Google Scholar 

  135. R. Solanki. Generating the noninferior set in mixed integer biobjective linear programs: An application to a location problem. Computers & Operations Research, 18:1–15, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  136. A. Tamir, D. Pérez-Brito, and J.A. Moreno-Pérez. A polynomial algorithm for the p-centdian problem on a tree. Networks, 32:255–262, 1998.

    Article  MathSciNet  Google Scholar 

  137. A. Tamir, J. Puerto, and D. Pérez-Brito. The centdian subtree on tree networks. `Discrete Applied Mathematics, 118:263–278, 2002.

    MathSciNet  Google Scholar 

  138. C. Tammer. A generalization of ekeland’s variational principle. Optimization, 25:129–141, 1992.

    MATH  MathSciNet  Google Scholar 

  139. B.C. Tansel, R.L. Francis, and T.J. Lowe. A biobjective multifacility minimax location problem on a tree network. Transportation Science, 16(4):407–429, 1982.

    MathSciNet  Google Scholar 

  140. J.F. Thisse, J. E. Ward, and R. E. Wendell. Some properties of location problems with block and round norms. Operations Research, 32:1309–1327, 1984.

    MathSciNet  Google Scholar 

  141. C. Tofallis. Multi-criteria site selection using d.e.a. profiling. Studies in Locational Analysis, 11:211–218, 1997

    MATH  Google Scholar 

  142. G. Wanka. Duality in vectorial control approximation problems with inequality restrictions. Optimization, 22(5):755–764, 1991.

    MATH  MathSciNet  Google Scholar 

  143. G. Wanka. On duality in the vectorial control-approximation problem. ZOR — Methods and Models of Operations Reseach, 35:309–320, 1991.

    MATH  MathSciNet  Google Scholar 

  144. G. Wanka. Kolmogorov-conditions for vectorial approximation problems. OR Spektrum, 16:53–58, 1994.

    MATH  MathSciNet  Google Scholar 

  145. G. Wanka. Properly efficient solutions for vectorial norm approximation. OR Spektrum, 16:261–265, 1994.

    MATH  MathSciNet  Google Scholar 

  146. G. Wanka. Characterization of approximately efficient solutions to multiobjective location problems using ekeland’s variational principle. Studies in Locational Analysis, 10:163–176, 1996.

    MATH  MathSciNet  ADS  Google Scholar 

  147. G. Wanka. ε-optimality to approximation in partially ordered spaces. Optimization, 38:1–10, 1996.

    MATH  MathSciNet  Google Scholar 

  148. G. Wanka. Multiobjective control approximation problems: Duality and optimality. Journal of Optimization Theory and Applications, 105(2):457–475, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  149. J. Ward. Structure of efficient sets for convex objectives. Mathematics of Operations Research, 14:249–257, 1989.

    MATH  MathSciNet  Google Scholar 

  150. J.E. Ward and R.E. Wendell. Characterizing efficient points in location problems under the one-infinity norm. In J.-F. Thisse and H.G. Zoller, editors, Location Analysis of Public Facilities, pages 413–429. North Holland, Amsterdam, 1983.

    Google Scholar 

  151. R.E. Wendell and A.P. Hurter. Location theory, dominance, and convexity. Operations Research, 21:314–320, 1973.

    MathSciNet  Google Scholar 

  152. R.E. Wendell, A.P. Hurter, and T.J. Lowe. Efficient points in location problems. AIIE Transactions, 9:238–246, 1977.

    MathSciNet  Google Scholar 

  153. R.E. Wendell and D.N. Lee. Efficiency in multiple objective optimization problems. Mathematical Programming, 12:406–414, 1977.

    Article  MathSciNet  Google Scholar 

  154. G.O. Wesolowsky. The weber problem: History and perspectives. Location Science, 1(1):5–23, 1993.

    MATH  Google Scholar 

  155. D.J. White. Optimality and Efficiency. John Wiley & Sons, Chichester, 1982.

    Google Scholar 

  156. C. Witzgall. Optimal location of a central facility: Mathematical models and concepts. National Bureau of Standards Report 8388, 1965.

    Google Scholar 

  157. K. Yoon and C.L. Hwang. Manufacturing plant location analysis by multiple attribute decision making: Part I — Single-plant strategy. International Journal of Production Research, 23(2):345–359, 1985.

    Google Scholar 

  158. K. Yoon and C.L. Hwang. Manufacturing plant location analysis by multiple attribute decision making: Part II — Multi-plant strategy and plant relocation. International Journal of Production Research, 23(2):361–370, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Nickel, S., Puerto, J., Rodríguez-Chía, A.M. (2005). MCDM Location Problems. In: Multiple Criteria Decision Analysis: State of the Art Surveys. International Series in Operations Research & Management Science, vol 78. Springer, New York, NY. https://doi.org/10.1007/0-387-23081-5_19

Download citation

Publish with us

Policies and ethics

Navigation