Computerized Analysis and Vasodilation Parameterization in Flow-Mediated Dilation Tests from Ultrasonic Image Sequences

  • Chapter
Handbook of Biomedical Image Analysis

Abstract

Assessment and characterization of endothelial function in the diagnosis of cardiovascular diseases is a current clinical research topic [1,2]. The endothelium shows measurable responses to flow changes [3,4], and flow-mediated dilation (FMD) may therefore be used for assessing endothelial health; B-mode ultrasonography (US) is a cheap and noninvasive way to estimate this dilation response [5]. However, complementary computerized image analysis techniques are still very desirable to give accuracy and objectivity to the measurements [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.99
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  1. Corretti, M. C., Anderson, T. J., Benjamin, E. J., Celermajer, D., Charbonneau, F., Creager, M. A., Deanfield, J., Drexler, H., Gerhard-Herman, M., Herrington, D., Vallance, P., Vita, J., Vogel, R., and International Brachial Artery Reactivity Task Force, Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: A report of the International Brachial Artery Reactivity Task Force, J. Am. Coll. Cardiol., Vol. 39, pp. 257–265, 2002.

    Article  Google Scholar 

  2. Teragawa, H., Kato, M., Kurokawa, J., Yamagata, T., Matsuura, H., and Chayama, K., Endothelial dysfunction is an independent factor responsible for vasospastic angina, Clin. Sci. (London), Vol. 101, pp. 707–713, 2001.

    Article  Google Scholar 

  3. Cooke, J. P., Rossitch, E., Jr, Andon, N. A., Loscalzo, J., and Dzau, V. J., Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator, J. Clin. Invest., Vol. 88, pp. 1663–1671, 1991.

    Article  Google Scholar 

  4. Sinoway, L. I., Hendrickson, C., Davidson, W. R., Jr, Prophet, S., and Zelis, R., Characteristics of flow-mediated brachial artery vasodilation in human subjects, Circ. Res., Vol. 64, pp. 32–42, 1989.

    Google Scholar 

  5. Celermajer, D. S., Sorensen, K. E., Gooch, V. M., Spiegelhalter, D. J., Miller, O. I., Sullivan, I. D., Lloyd, J. K., and Deanfield, J. E., Noninvasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis, Lancet, Vol. 340, pp. 1111–1115, 1992.

    Article  Google Scholar 

  6. Hardie, K. L., Kinlay, S., Hardy, D. B., Wlodarczyk, J., Silberberg, J. S., and Fletcher, P. J., Reproducibility of brachial ultrasonography and flow-mediated dilatation (FMD) for assessing endothelial function, Aust. N.Z. J. Med., Vol. 27, pp. 649–652, 1997.

    Google Scholar 

  7. Touboul, P. J., Prati, P., Scarabin, P. Y., Adrai, V., Thibout, E., and Ducimetiere, P., Use of monitoring software to improve the measurement of carotid wall thickness by B-mode imaging, J. Hypertens. Suppl., Vol. 10, pp. S37–S41, 1992.

    Article  Google Scholar 

  8. Gariepy, J., Massonneau, M., Levenson, J., Heudes, D., Simon, A., and Groupe de Prevention Cardio-vasculaire en Medecine du Travail, Evidence for in vivo carotid and femoral wall thickening in human hypertension, Hypertension, Vol. 22, pp. 111–118, 1993.

    Google Scholar 

  9. Selzer, R. H., Hodis, H. N., Kwong-Fu, H., Mack, W. J., Lee, P. L., Liu, C. R., and Liu, C. H., Evaluation of computerized edge tracking for quantifying intima-media thickness of the common carotid artery from B-mode ultrasound images, Atherosclerosis, Vol. 111, pp. 1–11, 1994.

    Article  Google Scholar 

  10. Kozick, R., Detecting interfaces on ultrasound images of the carotid artery by dynamic programming, In: IS&T/SPIE Electronic Imaging Symposium, San Jose, CA, Feb 1996, Vol. 2666, pp. 233–241.

    Google Scholar 

  11. Gustavsson, T., Liang, Q., Wendelhag, I., and Wikstrand, J., A dynamic programming procedure for automated ultrasonic measurement of the carotid artery, In: IEEE Computers Cardiology, IEEE Computer Society, pp. 297–300, 1999.

    Google Scholar 

  12. Sonka, M., Liang, W., and Lauer, R. M., Flow-mediated dilatation in brachial arteries: Computer analysis of ultrasound image sequences, CVD Preven., Vol. 1, pp. 147–55, 1998.

    Google Scholar 

  13. Liang, Q., Wendelhag, I., Wikstrand, J., and Gustavsson, T., A multiscale dynamic programming procedure for boundary detection in ultrasonic artery images, IEEE Trans. Med. Imaging, Vol. 19, pp. 127–142, 2000.

    Article  Google Scholar 

  14. Preik, M., Lauer, T., Heiss, C., Tabery, S., Strauer, B. E., and Kelm, M., Automated ultrasonic measurement of human arteries for the determination of endothelial function, Ultraschall. Med., Vol. 21, pp. 195–198, 2000.

    Article  Google Scholar 

  15. Fan, L., Santago, P., Jiang, H., and Herrington, D. M., Ultrasound measurement of brachial flow-mediated vasodilator response, IEEE Trans. Med. Imaging, Vol. 19, pp. 621–631, 2000.

    Article  Google Scholar 

  16. Fan, L., Santago, P., Riley, W., and Herrington, D. M., An adaptive template-matching method and its application to the boundary detection of brachial artery ultrasound scans, Ultrasound Med. Biol., Vol. 27, pp. 399–408, 2001.

    Article  Google Scholar 

  17. Mignotte, M. and Meunier, J., A multiscale optimization approach for the dynamic contour-based boundary detection issue, Comput. Med. Imaging Graph., Vol. 25, pp. 265–275, 2001.

    Article  Google Scholar 

  18. Woodman, R. J., Playford, D. A., Watts, G. F., Cheetham, C., Reed, C., Taylor, R. R., Puddey, I. B., Beilin, L. J., Burke, V., Mori, T. A., and Green, D., Improved analysis of brachial artery ultrasound using a novel edge-detection software system, J. Appl. Physiol., Vol. 91, pp. 929–937, 2001.

    Google Scholar 

  19. Sonka, M., Liang, W., and Lauer, R. M., Automated analysis of brachial ultrasound image sequences: Early detection of cardiovascular disease via surrogates of endothelial function, IEEE Trans. Med. Imaging, Vol. 21, pp. 1271–1279, 2002.

    Article  Google Scholar 

  20. Newey, V. R. and Nassiri, D. K., Online artery diameter measurement in ultrasound images using artificial neural networks, Ultrasound Med. Biol., Vol. 28, pp. 209–216, 2002.

    Article  Google Scholar 

  21. Studholme, C., Hill, D. L. G., and Hawkes, D. J., An overlap invariant entropy measure of 3D medical image alignment, Patt. Recogn., Vol. 32, No. 1, pp. 71–86, 1999.

    Article  Google Scholar 

  22. Studholme, C., Hill, D., and Hawkes, D., Automated three-dimensional registration of magnetic resonance and positron emission tomography brain images by multiresolution optimization of voxel similarity measures, Med. Phys., Vol. 24, No. 1, pp. 25–35, 1997.

    Article  Google Scholar 

  23. Kalman, R. E., A new approach to linear filtering and prediction problem, Trans. ASME, J. Basic Eng., Vol. 82 (Series D), pp. 35–45, 1960.

    Google Scholar 

  24. Hayes, M., Statistical Digital Signal Processing and Modelling, Wiley, New York, 1996.

    Google Scholar 

  25. Altman, D., Practical Statistical Research, Chapman&Hall, Boca Raton, FL, 1991.

    Google Scholar 

  26. Bland, J. and Altman, D., Measuring agreement in method comparison studies, Stat. Methods Med. Res., Vol. 8, No. 2, pp. 135–160, 1999.

    Article  Google Scholar 

  27. Bland, J. and Altman, D., Statistical methods for assessing agreement between two methods of clinical measurement, Lancet, Vol. 1, No. 8476, pp. 307–310, 1986.

    Google Scholar 

  28. Vita, J. A. and Keaney, J. F., Jr, Endothelial function: A barometer for cardiovascular risk?, Circulation, Vol. 106, No. 6, pp. 640–642, 2002.

    Article  Google Scholar 

  29. Faulx, M. D., Wright, A. T., and Hoit, B. D., Detection of endothelial dysfunction with brachial artery ultrasound scanning, Am. Heart J., Vol. 145, No. 6, pp. 943–951, 2003.

    Article  Google Scholar 

  30. Widlansky, M. E., Gokce, N., Keaney, J. F., Jr, and Vita, J. A., The clinical implications of endothelial dysfunction, J. Am. Coll. Cardiol., Vol. 42, No. 7, pp. 1149–1160, 2003.

    Article  Google Scholar 

  31. Gokce, N., Keaney, J. F., Jr, Hunter, L. M., Watkins, M. T., Nedeljkovic, Z. S., Menzoian, J. O., and Vita, J. A., Predictive value of noninvasively determined endothelial dysfunction for long-term cardiovascular events in patients with peripheral vascular disease, J. Am. Coll. Cardiol., Vol. 41, No. 10, pp. 1769–1775, 2003.

    Article  Google Scholar 

  32. Jolliffe, I., Principal Component Analysis, 2nd edn., Springer Series in Statistics, Springer-Verlag, New York, 2002.

    MATH  Google Scholar 

  33. Hubert, M., Rousseeuw, P., and van den Branden, K., ROBPCA: A new approach to robust principal component analysis, Technical Report, Department of Mathematics, Katholieke Universiteit Leuven, 2003.

    Google Scholar 

  34. The National Cholesterol Education Program (NCEP), Executive summary of the third report of The National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III), JAMA, Vol. 285, pp. 2486–2497, 2001.

    Article  Google Scholar 

  35. Ross, R., The pathogenesis of atherosclerosis: A perspective for the 1990s, Nature, Vol. 362, pp. 801–809, 1993.

    Article  Google Scholar 

  36. Friedewald, W. T., Levy, R. I., and Fredrickson, D. S., Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge, Clin. Chem., Vol. 18, pp. 499–502, 1972.

    Google Scholar 

  37. Roberts, W. C., The Friedewald-Levy-Fredrickson formula for calculating low-density lipoprotein cholesterol, the basis for lipid-lowering therapy, Am. J. Cardiol., Vol. 62, pp. 345–346, 1988.

    Article  Google Scholar 

  38. Kuvin, J. T., Patel, A. R., Sidhu, M., Rand, W. M., Sliney, K. A., Pandian, N. G., and Karas, R. H., Relation between high-density lipoprotein cholesterol and peripheral vasomotor function, Am. J. Cardiol., Vol. 92, pp. 275–279, 2003.

    Article  Google Scholar 

  39. Aggoun, Y., Bonnet, D., Sidi, D., Girardet, J. P., Brucker, E., Polak, M., Safar, M. E., and Levy, B. I., Arterial mechanical changes in children with familial hypercholesterolemia, Arterioscler Thromb. Vasc. Biol., Vol. 20, pp. 2070–2075, 2000.

    Google Scholar 

  40. Toikka, J. O., Ahotupa, M., Viikari, J. S., Niinikoski, H., Taskinen, M., Irjala, K., Hartiala, J. J., and Raitakari, O. T., Constantly low HDLcholesterol concentration relates to endothelial dysfunction and increased in vivo LDL-oxidation in healthy young men, Atherosclerosis, Vol. 147, pp. 133–138, 1999.

    Article  Google Scholar 

  41. Holubkov, R., Karas, R. H., Pepine, C. J., Rickens, C. R., Reichek, N., Rogers, W. J., Sharaf, B. L., Sopko, G., Merz, C. N., Kelsey, S.F., McGorray, S. P., and Reis, S. E., Large brachial artery diameter is associated with angiographic coronary artery disease in women, Am. Heart J., Vol. 143, pp. 802–807, 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Frangi, A.F., Laclaustra, M., Yang, J. (2005). Computerized Analysis and Vasodilation Parameterization in Flow-Mediated Dilation Tests from Ultrasonic Image Sequences. In: Suri, J.S., Wilson, D.L., Laxminarayan, S. (eds) Handbook of Biomedical Image Analysis. Topics in Biomedical Engineering International Book Series. Springer, Boston, MA. https://doi.org/10.1007/0-306-48606-7_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-48606-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48605-0

  • Online ISBN: 978-0-306-48606-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation