Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 7))

Summary

The two major pigments found in photosynthetic eukaryotic cells are the tetrapyrroles (including chlorophylls, heme, and their derivatives) and the carotenoids. Both of these classes of molecules play an important role in the light absorption and energy transduction processes of photosynthesis and they also participate in numerous other metabolic activities in the cell. Over the past several years there has been a considerable advancement in our understanding of the biochemistry and genetic regulation of tetrapyrrole and carotenoid formation. Genes encoding many of the enzymes of the two biosynthetic pathways have been isolated and their nucleotide and encoded primary protein structures determined. Such molecular analysis has greatly facilitated the examination of how enzyme synthesis and activity are regulated throughout development and under a variety of different growth and environmental conditions. It has also led to new insights into the reaction mechanisms and specificities of several key enzymes in these processes. In this chapter, I present an overview of the recent developments in tetrapyrrole and carotenoid biosynthesis, drawing upon work carried out in a wide range of organisms in order to better illustrate certain features of the biosynthetic process in question or to highlight particularly important differences among species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 245.03
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 320.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 320.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

ALA:

δ-aminolevulinicacid

CoA:

coenzyme A

CPOX:

coproporphyrinogen III oxidase

EDTA:

ethylene dinitrilo-tetraacetic acid

EGTA:

ethyleneglycol-bis-(β-aminoethyl ether) N,N′-tetraacetic acid

gabaculine:

3-amino-2,3- dihydrobenzoic acid

GGPP:

geranylgeranylpyrophosphate

GluRS:

glutamyl-tRNA synthetase

GluTR:

glutamyl-tRNA reductase

GSA:

glutamate-1-semialdehyde

GSA-AT:

glutamate-1-semialdehyde aminotransferase

PAGE:

polyacrylamide gel electrophoresis

PBGD:

porphobilinogen deaminase

PBGS:

porphobilinogen synthase

PDS:

phytoene synthase

POR:

NADPH:protochlorophyllide oxidoreductase

PSY:

phytoene synthase

S. cerevisiae:

Saccharomyces cerevisiae

SAM:

S-adenosyl-L-methionine

SDS:

sodium lauryl sulfate

UROS:

uroporphyrinogen III synthase

X:

any amino acid

References

  • Akoyunoglou G, Argyoudi-Akoyunoglou JH, Micliel-Wolwertz MR and Sironval C (1967) Chlorophyll a as a precursor for chlorophyll b. Synthesis in barley leaves. Chim Chron 32: 5–8

    CAS  Google Scholar 

  • Albrecht M, Klein A, Huguency P, Sandmann G and Kuntz M (1995) Molecular cloning and functional expression in E. coli of a novel plant enzyme mediating ζ-carotene desaturation. FEBS Lett 372: 199–202

    Article  CAS  PubMed  Google Scholar 

  • Armstrong GA (1995) Genetic analysis and regulation of carotenoid biosynthesis: Structure and function of the crt genes and gene products. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp I 135–1 157. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Armstrong GA and Hearst JE (1996) Genetics and molecular biology of carotenoid pigment biosynthesis. FASEB J 10: 228–237

    CAS  PubMed  Google Scholar 

  • Armstrong GA, Runge S, Frick G, Sperling U and Apel K. (1995) Identification of NADPH: protochlorophyllide oxidoreductases A and B: A branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol 108: 1505–1517

    Article  CAS  PubMed  Google Scholar 

  • Avissar YJ and Bcale SI (1988) Biosynthesis of tetrapyrrole pigment precursors: Formation and utilization of glutamyl-tRNA for δ-aminolevulinic acid synthesis by isolated enzyme fractions from Chlorella vulgaris. Plant Physiol 88: 879–886

    CAS  Google Scholar 

  • Avissar YJ and Beale SI (1989) Biosynthesis of tetrapyrrole synthesis precursors: Pyridoxal requirement of the aminotransferase step in the formation of δ-aminolevulinate from glutainate in extracts of Chlorella vulgaris. Plant Physiol 89: 852–859

    CAS  Google Scholar 

  • Ball KL, Dale S, Weekes J and Hardie DG (1994) Biochemical characterization of two forms of 3-hydroxy-3-methylglutaryl-CoA reductase kinase from cauliflower (Brassica oleracia). Eur J Biochem 219: 743–750

    Article  CAS  PubMed  Google Scholar 

  • Ball KL, Barker J, Halford NG and Hardie DG (1995) Immunological evidence that HMG-CoA reductase kinase-A is the cauliflower homologue of the RKIN1 subfamily of plant protein kinases. FEBS Lett 377: 189–192

    Article  CAS  PubMed  Google Scholar 

  • Bartley GE and Scolnik PC (1993) cDNA cloning, expression during development and genome map** of PSY2, a second tomato gene encoding phytoene synthase. J Biol Chem 268: 25718–25721

    CAS  PubMed  Google Scholar 

  • Bartley GE and Scolnik PA (1995) Plant carotenoids: Pigments for photoprotection, visual attraction, and human health. Plant Cell 7: 1027–1038

    Article  CAS  PubMed  Google Scholar 

  • Bartley GE, Scolnik PA and Giuliano G (1994) Molecular biology of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 45: 287–301

    Article  CAS  Google Scholar 

  • Battersby AR (1994) How nature builds the pigments of life: The conquest of vitamin B12. Science 264: 1551–1557

    CAS  PubMed  Google Scholar 

  • Battersby AR, Fookes CJR, Matcham GWJ and McDonald E (1979) Order of assembly of the four pyrrole rings during the biosynthesis of natural porphyrins. J Chem Soc Chem Commun 539–541

    Google Scholar 

  • Bauer CE, Bollivar DW and Suzucki JY (1993) Genetic analysis of photopigment biosynthesis in Eubacteria: A guiding light for algae and plants. J Bacteriol 175: 3919–3925

    CAS  PubMed  Google Scholar 

  • Beale SI (1993) Biosynthesis of cyanobacterial tetrapyrrole pigments: Hemes, chlorophylls, and phycobilin. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 519–558. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Beale SI (1994) Biosynthesis of open-chain tetrapyrroles in plants, algae, and cyanobacteria. In: Chadwick DJ and Ackrill K (eds), The Biosynthesis of Tetrapyrrole Pigments, Ciba Foundation Symposium 180, pp 168–171. John Wiley and Sons, London

    Google Scholar 

  • Beale SI (1995) Biosynthesis and structure of porphyrins and homes. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 153–177. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Beale SA and Weinstein JD (1990) Tetrapyrrole metabolism in photosynthetic organisms. In: Dailey HA (ed) Biosynthesis of Heine and Chlorophylls, pp 287–391. McGraw-Hill, Inc., New York

    Google Scholar 

  • Bednarik DP and Hoober JK (1985a) Synthesis of chlorophyllide b from protochlorophyllide in Chlamydomonas reinhardtii y-1. Science 230: 450–453

    CAS  Google Scholar 

  • Bednarik DP and Hoober JK (1985b) Biosynthesis of a chlorophyllide b-like pigment in phenanthroline-treated Chlamydomonas reinhardtii y-1. Arch Biochem Biophys 240: 369–379

    Article  CAS  PubMed  Google Scholar 

  • Berry-Lowe S (1987) The chloroplast glutamate tRNA gene required for 5-aminolevulinate synthesis. Carlsberg Res Commun 52: 197–210

    CAS  Google Scholar 

  • Beyer P, Mayer M and Kleinig H (1989) Molecular oxygen and the state of geometric isomerization of intermediates are essential in the carotene desaturation and cyclization reactions in daffodil chromoplasts. Eur J Biochem 184: 141–150

    Article  CAS  PubMed  Google Scholar 

  • Biel AJ (1995) Genetic analysis and regulation of bacteriochlorophyll biosynthesis. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 1125–1134. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Boese QF, Spano AJ, Li J and Timko MP (1991) Aminolevulinic acid dehydratase in pea (Pisum sativum L.). Identification of an unusual metal binding domain in the plant enzyme. J Biol Chem 266: 17060–17066

    CAS  PubMed  Google Scholar 

  • Bogard M, Camadro JM, Nordmann Y and Labbe P (1989) Purification and properties of mouse liver coproporphyrinogen oxidase. Eur J Biochem 181: 417–421

    Article  CAS  PubMed  Google Scholar 

  • Bollivar DW and Beale SI (1995) Formation of the isocyclic ring of chlorophyll by isolated Chlamydomonas reinhardtii chloroplasts. Photosyn Res 43: 113–124

    CAS  Google Scholar 

  • Bollivar DW and Beale SI (1996) The chlorophyll biosynthetic enzyme Mg-protoporphyrin IX monomethylester (oxidative) cyclase. Characterization and partial purification from Chlamydomonas reinhardtii and Synechocystis sp. PCC 6803. Plant Physiol 112: 105–114

    CAS  PubMed  Google Scholar 

  • Bollivar DW, Suzuki JY, Beatty JT, Dobrowolski JM and Bauer CE (1994a) Directed mutational analysis of chlorophyll a biosynthesis in Rhodobacter capsulatus. J Mol Biol 237: 622–640

    Article  CAS  PubMed  Google Scholar 

  • Bollivar DW, Jiang Z-Y, Bauer CE and Beale SI (1994b) Heterologous expression of the bchM gene product from Rhodobacter capsulatus and demonstration that it encodes S-adenosyl-L-methionine: magnesium-protoporphyrin IX methyltransferase. J Bacteriol 176: 5290–5296

    CAS  PubMed  Google Scholar 

  • Bollivar DW, Wang S, Allen JP and Bauer CE (1994c) Molecular genetic analysis of terminal steps in bacteriochlorophyll a biosynthesis: Characterization of a Rhodobacter capsulatus strain that synthesizes gernaylgeranoil-esterified bacteriochlorophyll a. Biochemistry 33: 12763–12768

    Article  CAS  PubMed  Google Scholar 

  • Bougri O and Grimm B (1996) Members of a low-copy number gene family encoding glutamyl-tRNA reductase are differentially expressed in barley. Plant J 9: 867–878

    Article  CAS  PubMed  Google Scholar 

  • Bouvier F, Hugueney P, ďHarlingue A, Kuntz M and Camara B (1994) Xanthophyll biosynthesis in chromoplasts: Isolation and molecular cloning of an enzyme catalyzing the conversion of 5,6-epoxycarotenoid into ketocarotenoid. Plant J 6: 45–54

    Article  CAS  PubMed  Google Scholar 

  • Bramley PM (1994) Carotenoid biosynthesis: A target site for bleaching herbicides. Biochem Soc Trans 22: 625–629

    CAS  PubMed  Google Scholar 

  • Britton G (1993) Carotenoids in chloroplast pigment-protein complexes. In: Sundqvist C and Ryberg M (eds), Pigment-Protein Complexes in Plastids: Synthesis and Assembly, pp 447–483. Academic Press, Inc., New York

    Google Scholar 

  • Bruyant P and Kannangara CG (1987) Biosynthesis of-aminolevulinate in greening barley leaves. VIII. Purification and characterization of the glutamate-tRNA ligase. Carlsberg Res Commun 52: 99–109

    CAS  Google Scholar 

  • Bugos RC and Yamamoto HY (1996) Molecular cloning of violaxanthin de-epoxidase from romaine lettuce and expression in Escherichia coli. Proc Natl Acad Sci (USA) 93: 6320–6325

    CAS  Google Scholar 

  • Burke DH, Hearst JE and Sidow A (1993) Early evolution of photosynthesis: Clues from nitrogenase and chlorophyll iron proteins. Proc Natl Acad Sci (USA) 96: 7134–7138

    Google Scholar 

  • Camadro J M, Chambon H, Jolles J and Labbe P (1986) Purification and properties of coproporphyrinogen oxidase from Saccharo-myces cerevisiae. Eur J Biochem 156: 579–587

    Article  CAS  PubMed  Google Scholar 

  • Camara B (1993) Plant phytoene synthase complex-component enzymes, immunology, and biogenesis. Methods Enzymol 214: 352–365

    CAS  Google Scholar 

  • Castelfranco PA, Walker CJ and Weinstein JD (1994) Biosynthetic studies on chlorophylls: From protoporphyrin IX to protochlorophyllide. In: Chadwick DJ and Ackrill K (eds) The Biosynthesis of the Tetrapyrrole Pigments, Ciba Foundation Symposium 180, pp 194–204. John Wiley and Sons, Inc., London

    Google Scholar 

  • Chang T-E, Wegmann B and Wang W-Y (1990) Purification and characterization of glutamyl-tRNA synthetase: An enzyme involved in chlorophyll biosynthesis. Plant Physiol 93: 1641–1649

    CAS  Google Scholar 

  • Chen M-W, Jahn D, Schön A, O’Neill GP and Söil D (1990a) Purification and characterization of Chlamydomonas reinhardtii chloroplast glutamyl-tRNA synthetase, a natural misacylating enzyme. J Biol Chem 265: 4054–4057.

    CAS  PubMed  Google Scholar 

  • Chen M-W, Jahn D, Schön A, O’Neill GP and Söli D (1990b) Purification of the glutamyl-tRNA reductase from Chlamydomonas reinhardtii involved in δ-aminolevulinic acid formation during chlorophyll biosynthesis. J Biol Chem 265: 4058–4063

    CAS  PubMed  Google Scholar 

  • Chen TC and Miller GW (1974) Purification and characterization of uroporphyrinogen decarboxylase from tobacco leaves. Plant Cell Physiol 15: 993–1005

    CAS  Google Scholar 

  • Cheung K-M, Spencer P, Timko MP and Shoolingin-Jordan PM (1997) Characterization of a recombinant pea 5-aminolevulinic acid dehydratase and comparative inhibition studies with the Escherichia coli dehydratase. Biochemistry 36: 1148–1156.

    Article  CAS  PubMed  Google Scholar 

  • Choquet Y, Rahire M, Girard-Bascou J, Erickson J and Rochaix J-D (1992) A chloroplast gene is required for the light-independent accumulation of chlorophyll in Chlamydomonas reinhardtii. EMBO J 11: 1697–1704

    CAS  PubMed  Google Scholar 

  • Chunayev AS, Mirnaya ON, Maslov VG and Boschetti A (1991) Chlorophyll b and chloroxanthin-deficient mutants of Chlamydomonas reinhardtii. Photosynthetica 25: 291–301

    Google Scholar 

  • Corona V, Aracri B, Kosturkova G, Bartley GE, Pitto L, Giorgetti L, Scolnik PA and Giuliano G (1996) Regulation of a carotenoid biosynthesis gene promoter during plant development. Plant J 9: 505–512

    Article  CAS  PubMed  Google Scholar 

  • Crawford NM (1995) Nitrate: Nutrient and signal for plant growth. Plant Cell 7: 859–868

    Article  CAS  PubMed  Google Scholar 

  • Croteau R and Purkett PT (1989) Geranyl pyrophosphate synthase: Characterization of the enzyme and evidence that this chain-length specific prenyltransferase is associated with monoterpene biosynthesis in sage (Salvia officinalis). Arch Biochem Biophys 271: 524–535

    Article  CAS  PubMed  Google Scholar 

  • Cunningham FX Jr, Pogson B, Sun Z, McDonald KA, DellaPenna D and Gantt E (1996) Functional analysis of the β and ς lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell 8: 1613–1626

    CAS  PubMed  Google Scholar 

  • Dailey HA (1990) Conversion of coproporphyrinogen to protoheme in higher eukaryotes and bacteria: Terminal three enzymes. In: Dailey HA (ed), Biosynthesis of Heme and Chlorophylls, pp 123–161. McGraw-Hill, Inc., New York

    Google Scholar 

  • Dogbo O and Camara B (1987) Purification of isopentenyl pyrophosphate isomerase and geranylgeranyl pyrophosphate synthase from Capsicum chromoplasts by affinity chromatography. Biochim Biophys Acta 920: 140–148

    CAS  Google Scholar 

  • Dörnemann D and Senger H (1986) The structure of chlorophyll RC I, a chromophore of the reaction center of photosystem I. Photochem Photobiol 43: 573–581

    Google Scholar 

  • Dörnemann D, Kotzabasis K, Richter P, Breu V and Senger H (1989) The regulation of chlorophyll biosynthesis by the action of protochlorophyllide on Glut-RNA-ligase. Bot Acta 102: 112–115

    Google Scholar 

  • Ford C and Wang W-Y (1980a) Three new yellow loci in Chlamydomonas reinhardtii. Mol Gen Genet 179: 259–263

    Article  CAS  PubMed  Google Scholar 

  • Ford C and Wang W-Y (1980b) Temperature sensitive yellow mutants of Chlamydomonas reinhardtii. Mol Gen Genet 180: 5–10

    Article  Google Scholar 

  • Ford C and Wang W-Y (1982) Instability at the y-1 locus of Chlamydomonas reinhardtii. Mol Gen Genet 187: 286–290

    Article  Google Scholar 

  • Ford C, Mitchell S and Wang W-Y (1981) Protochlorophyllide photoconversion mutants of Chlamydomonas reinhardtii. Mol Gen Genet 184: 460–164

    Article  CAS  Google Scholar 

  • Ford C, Mitchell S and Wang W-Y (1983) Characterization of NADPH:protochlorophyllide photoconversion in the y-7 and pc-1 y-7 mutants of Chlamydomonas reinhardtii. Mol Gen Genet 194: 290–292

    Google Scholar 

  • Francis G W, Strand LP, Lien T and Knudsen G (1975) Variations in the carotenoid content of Chlamydomonas reinhardtii throughout the cell cycle. Arch Microbiol 104: 249–254

    Article  CAS  PubMed  Google Scholar 

  • Frydman RB and G Feinstein (1974) Studies on porphobilinogen deaminase and uroporphyrinogen III cosynthase from human erythrocytes. Biochim Biophys Acta 350: 358–373

    CAS  PubMed  Google Scholar 

  • Fuesler TP, Castelfranco PA and Wong Y-S (1984) Formation of Mg-containing chlorophyll precursors from protoporphyrin IX, δ-aminolevulinic acid, and glutamate in isolated, photosynthetically competent, develo** chloroplasts. Plant Physiol 74: 928–933

    CAS  Google Scholar 

  • Fujita Y (1996) Protochlorophyllide reduction: a key step in the greening of plants. Plant Cell Physiol 37: 411–421

    CAS  PubMed  Google Scholar 

  • Fujita Y, Takahashi Y, Kohchi T, Ozeki H, Ohyama K and Matsubara H (1989) Identification of a novel nifH-like (frxC) protein in chloroplasts of the liverwort Marchantia polymorpha. Plant Mol Biol 13: 551–561

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Takahashi Y, Shonai F, Ogura Y and Matsubara H (1991) Cloning, nucleotide sequences and differential expression of the nifH and nifH-like (frxC) genes from the filamentous nitrogen-fixing cyanobacterium Plectonema boryanum. Plant Cell Physiol 32: 1093–1106

    CAS  Google Scholar 

  • Fujita Y, Matsumoto H, Takahashi Y and Matsubara H (1993) Identification of a nifDK-likegene (ORF467) involved in the biosynthesis of chlorophyll in the cyanobacterium Plectonema boryanum. Plant Cell Physiol 34: 305–314

    CAS  PubMed  Google Scholar 

  • Fujita Y, Takagi H and Hase T (1996) Identification of the chlB gene and the gene product essential for the light-independent chlorophyll biosynthesis in the cyanobacterium Plectonema boryanum. Plant Cell Physiol 37: 313–323

    CAS  PubMed  Google Scholar 

  • Gaubier P, Wu H-J, Laudié, Delseny M and Grellet F (1995) A chlorophyll synthetase gene from Arabidopsis thaliana. Mol Gen Genet 249: 58–64

    Article  CAS  PubMed  Google Scholar 

  • Gibson LCD and Hunter CN (1994) The bacteriochlorophyll biosynthesis gene, bchM, of Rhodobacter sphaeroides encodes S-adenosyl-L-methionine: Mg protoporphyrin IX methyltransferase. FEES Lett 352: 127–130

    Article  CAS  Google Scholar 

  • Gibson LCD, Willows RD, Kannangara CG, von Wettstein D and Hunter CN (1995) Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: Rcconstitution of activity by combining the product s of the bchH,-I, and -D genes expressed in Escherichia coli. Proc Natl Acad Sci USA 92: 1941–1944

    CAS  PubMed  Google Scholar 

  • Gibson LCD, Marrison JL, Leech RM, Jensen PE, Bassham DC, Gibson M and Hunter CN (1996) A putative Mg chelatase subunit from Arabidopsis thaliana cv C24-Sequence and transcript analysis of the gene, import of the protein into chloroplasts, and in situ localization of the transcript and protein. Plant Physiol 111: 61–71

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Silva B, Timko MP and Schiff JA (1985) Chlorophyll biosynthesis from glutamate or 5-aminolevulinate in intact Euglena chloroplasts. Planta 165: 12–22

    Article  CAS  Google Scholar 

  • Grandchamp B and Nordmann Y (1978) The mitochondrial localization of coproporphyrinogen III oxidase. Biochem J 176: 97–10

    CAS  PubMed  Google Scholar 

  • Griffiths WT (1991) Protochlorophyllide photoreduction. In: Scheer H (ed) The Chlorophylls, pp 433–449. CRC Press, Boca Raton

    Google Scholar 

  • Griffiths WT, McHugh T and Blankenship RE (1996) The light intensity dependence of protochlorophyllide photoconversion and its significance to the catalytic mechanism of protochlorophyllide reductase. FEBS Lett 398: 235–238

    Article  CAS  PubMed  Google Scholar 

  • Grimm B (1990) Primary structure of a key enzyme in plant tetrapyrrole synthesis: Glutamate 1-semialdehyde aminotransferase. Proc Natl Acad Sci (USA) 87: 4169–4173

    CAS  Google Scholar 

  • Grimm B, Bull A, Welinder KG, Gough SP and Kannangara CG (1989) Purification and partial amino acid sequence of the glutamate 1-semialdehyde aminotransferase of barley and Synechococcus. Carlsberg Res Commun 54: 67–79

    CAS  PubMed  Google Scholar 

  • Grimm B, Smith MA and von Wettstein D (1992) The role of Lys272 in the pyridoxal 5-phosphate active site of Synechococcus glutamate-1-semialdehyde aminotransferase. Eur J Biochem 206: 579–585

    Article  CAS  PubMed  Google Scholar 

  • Harris EH (1989) The Chlamydomonas Source Book: A Comprehensive Guide to Biology and Laboratory Use Academic Press, Inc., San Diego

    Google Scholar 

  • Hart GJ and Battersby AR (1985) Purification and properties of uroporphyrinogen III synthase (co-synthetase) from Euglena gracilis. Biochem J 232: 151–160

    CAS  PubMed  Google Scholar 

  • Hart GJ, Miller AD, Leeper FJ and Battersby AR (1987) Biosynthesis of natural porphyrins: proof that hydroxy-methylbilane synthase (porphobilinogen deaminase) uses a novel binding group in its catalytic action. J Chem Soc Chem Commun 1762–1765

    Google Scholar 

  • He Z-H, Li J, Sundqvist C and Timko MP (1994) Leaf developmental age controls expression of genes encoding enzymes of chlorophyll and heme biosynthesis in pea (Pisum sativum L.). Plant Physiol 106: 537–546.

    CAS  PubMed  Google Scholar 

  • Helfrich M and Rüdiger W (1992) Various metallopheophorbides as substrates for chlorophyll synthetase. Z Naturforsch 47c: 231–238

    Google Scholar 

  • Helfrich M, Schoch S, Lempert U, Cmiel E and Rüdiger W (1994) Chlorophyll synthetase can not synthesize chlorophyll a. Eur J Biochem 219: 267–275

    Article  CAS  PubMed  Google Scholar 

  • Herrin DL, Battey JF, Greer K and Schmidt GW( 1992) Regulation of chlorophyll apoprotein expression and accumulation: Requirements for carotenoids and chlorophyll. J Biol Chem 267: 8260–8269

    CAS  PubMed  Google Scholar 

  • Higuchi M and Bogorad L (1975) The purification and properties of uroporphyrinogen I synthetase and uroporphyrinogen III cosynthetase: Interactions between the enzymes. Ann NY Acad Sci 244: 401–418

    CAS  PubMed  Google Scholar 

  • Hill K and Merchant S (1995) Coordinate expression of coproporphyrinogen oxidase and cytochrome c6 in the green alga Chlamydomonas reinhardtii in response to changes in copper availability. EMBO J 5: 857–865

    Google Scholar 

  • Hirschberg J and Chamovitz D (1994) Carotenoids in cyanobacteria. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 559–579. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hirschberg J, Cohen M, Marker M, Lotan T, Mann V and Pecker I (1997) Molecular genetics of the carotenoid biosynthesis pathway in plants and algae. Pure Appl Chem 69: 2151–2158

    CAS  Google Scholar 

  • Höfgen R, Axelsen K, Kannangara CG, Schüttke I, Pohlenz H-D, Willmitzer L, Grimm B and von Wettstein D (1994) A visible marker for antisense mRNA expression in plants: Inhibition of chlorophyll synthesis with a glutamate-1-semialdehyde aminotransferase antisense gene. Proc Natl Acad Sci (USA) 91: 1726–1730

    Google Scholar 

  • Holtorf H, Reinbothe S, Reinbothe C, Bereza B and Apel K (1995) Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.). Proc Natl Acad Sci (USA) 92: 3254–3258

    CAS  Google Scholar 

  • Hoober JK, Kahn A, Ash D, Gough S and Kannangara CG (1988) Biosynthesis of δ-aminolevulinate in greening barley leaves. IX. Structure of the substrate, mode of gabaculine inhibition, and the catalytic mechanism of glutamate 1-semialdehyde aminotransferase. Carlsberg Res Comm 53: 11–25

    CAS  Google Scholar 

  • Hoober JK, White RA, Marks DB and Gabriel JL (1994) Biogenesis of thylakoid membranes with emphasis on the process in Chlamydomonas. Photosynth Res 39: 15–31

    Article  CAS  Google Scholar 

  • Houen G, Gough SP and Kannangara CG (1983) δ-Aminolevulinate synthesis in greening barley. V. The structure of glutamate 1-semialdehyde. Carlsberg Res Commun 48: 567–572

    CAS  Google Scholar 

  • Howe G and Merchant S (1994) Role of heme in the biosynthesis of cytochrome c6. J Biol Chem 269: 5824–5832

    CAS  PubMed  Google Scholar 

  • Hsu WP and Miller GW (1970) Coproporphyrinogenase in tobacco (Nicotiana tabacum L.). Biochem J 117: 215–220

    CAS  PubMed  Google Scholar 

  • Huang C and Liu X-Q (1992) Nucleotide sequence of the frxC, petB and trnL genes in the chloroplast genome of Chlamydomonas reinhardtii. Plant Mol Biol 18: 985–988

    Article  CAS  PubMed  Google Scholar 

  • Huang D-D and Wang W-Y (1986) Chlorophyll synthesis in Chlamydomonas starts with the formation of glutamyl-tRNA. J Biol Chem 261: 13451–13455

    CAS  PubMed  Google Scholar 

  • Huang D-D, Wang W-Y, Gough SP and Kannangara CG (1984) δ-Aminolevulinate acid-synthesizing enzymes need an RNA moiety for activity. Science 225: 1482–1484

    CAS  PubMed  Google Scholar 

  • Huang L, Bonner BA and Castelfranco PA (1989) Regulation of 5-aminolevulinic acid synthesis in develo** chloroplasts. II. Regulation of ALA-synthesizing capacity by phytochrome. Plant Physiol 90: 1003–1008

    CAS  Google Scholar 

  • Hudson A, Carpenter R, Doyle S and Coen ES (1993) Olive: A key gene required for chlorophyll biosynthesis in Antirrhinum majus. EMBO J 12: 3711–3719

    CAS  PubMed  Google Scholar 

  • Hugueney P, Römer S, Kuntz M and Camara B (1992) Characteriation and molecular cloning of a flavoprotein catalyzing the synthesis of phytofluene and ς-carotene in Capsicum chromoplasts. Eur J Biochem 209: 399–407

    Article  CAS  PubMed  Google Scholar 

  • Hugueney P, Badillo A, Chen H-C, Klein A, Hirschberg J, Camara B and Kuntz M (1995) Metabolism of cyclic carotenoids: A model for alteration of this biosynthetic pathway in Capsicum annum. Plant J 8: 417–424

    Article  CAS  PubMed  Google Scholar 

  • Ignatov NV and Litvin FF (1994) Photoinduced formation of pheophytin/chlorophyll-containing complexes during greening of plant leaves. Photosynth Res 42: 27–35

    Article  CAS  Google Scholar 

  • Ilag LL, Kumar AM and Söll D (1994) Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. Plant Cell 6: 265–275

    Article  CAS  PubMed  Google Scholar 

  • Im C-S, Matters GL and Beale SI (1996) Calcium and calmodulin are involved in blue light induction of the gsa gene for an early chlorophyll biosynthetic step in Chlamydomonas. Plant Cell 8: 2245–2253

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Ohtsuka T and Tanaka A (1996) Conversion of chlorophyll b to chlorophyll a via 7-hydroxymethyl chlorophyll. J Biol Chem 271: 1475–1479

    CAS  PubMed  Google Scholar 

  • Jacobs NJ and Jacobs JM (1987) Oxidation of protoporphyrinogen to protoporphyrin, a step in chlorophyll and heme biosynthesis: Purification and partial characterization of the enzyme from barley organelles. Biochem J 244: 219–224

    CAS  PubMed  Google Scholar 

  • Jacobs NJ, Borotz SE and Jacobs JM (1989) Characteristics of purified protoporphyrinogen oxidase from barley. Biochem Biophys Res Commun 161: 790–796

    Article  CAS  PubMed  Google Scholar 

  • Jaffe EK (1995) Porphobilinogen synthase, the first source of heme’s asymmetry. J Bioenerg Biomem 27: 169–179

    CAS  Google Scholar 

  • Jahn D (1992) Complex formation between glutamyl-tRNA synthetase and glutamyl-tRNA reductase during tRNA-dependent synthesis of 5-aminolevulinic acid in Chlamydomonas. FEBS Lett 314: 77–80

    Article  CAS  PubMed  Google Scholar 

  • Jahn D, Chen M-W and Söll D (1991) Purification and functional characterization of glutamate 1-semialdehyde aminotransferase from Chlamydomonas reinhardtii. J Biol Chem 266: 161–167

    CAS  PubMed  Google Scholar 

  • Jensen PE, Gibson LCD, Henningsen KW and Hunter CN (1996a) Expression of the chlI, chlD, and chlH genes from the cyanobacterium Synechocystis PCC 6803 in Escherichia coli and demonstration that the three cognate proteins are required for magnesium-protoporphyrin chelatase activity. J Biol Chem 271: 16662–16667

    CAS  PubMed  Google Scholar 

  • Jensen PE, Willows RD, Petersen BL, Vothknecht UC, Stummann BM, Kannangara CG, von Wettstein D and Henningsen KW (1996b) Structural genes for Mg-chelatase subunits in barley: Xantha-f,-g, and-h. Mol Gen Genet 250: 383–394

    CAS  PubMed  Google Scholar 

  • Jones RM and Jordan PM (1993) Purification and properties of uroporphyrinogen decarboxylase from Rhodobacter sphaeroides. Biochem J 293: 703–712

    CAS  PubMed  Google Scholar 

  • Jones RM and Jordan PM (1994) Purification and properties of porphobilinogen deaminase from Arabidopsis thaliana. Biochem J 299: 895–902

    CAS  PubMed  Google Scholar 

  • Jones MC, Jenkins JM, Smith AG and Howe CJ (1994) Cloning and characterization of genes for tetrapyrrole biosynthesis from the cyanobacterium Anacystis nidulans R2. Plant Mol Biol 24: 435–448

    CAS  PubMed  Google Scholar 

  • Jordan PM (1991) The biosynthesis of 5-aminolevulinic acid and its transformation into uroporphyrinogen III. In: Jordan PM (ed) Biosynthesis of Tetrapyrroles, pp 1–66. Elsevier, Amsterdam

    Google Scholar 

  • Jordan PM and Warren MJ (1987) Evidence for a dipyrromethane cofactor at the catalytic site of E. coli porphobilinogen deaminase. FEBS Lett 225: 87–92

    Article  CAS  PubMed  Google Scholar 

  • Jordan PM, Thomas SD and Warren (1988a) Purification, crystallization, and properties of porphobilinogen deaminase from a recombinant strain of Escherichia coli K12. Biochem J 254: 427–435

    CAS  PubMed  Google Scholar 

  • Jordan PM, Mgbeje IAB, Thomas SD and Alwan AF (1988b) Nucleotide sequence of the hemD gene of Escherichia coli encoding uroporphyrinogen III synthase and initial evidence for a hem operon. Biochem J 249: 613–616

    CAS  PubMed  Google Scholar 

  • Jordan PM, Cheung K-M, Sharma RP and Warren MJ (1993) 5-Amino-6-hydroxy-3,4,5,6-tetrahydropyan-2-one (HAT): A stable, cyclic form of glutamate-1-semialdehyde, the natural precursor for tetrapyrroles. Tetra Lett 34: 1177–1180

    CAS  Google Scholar 

  • Juknat AA, Seubert A, Seubert S and Ippen H (1989) Studies on uroporphyrinogen decarboxylase of etiolated Euglena gracilis Z. Eur J Biochem 179: 423–428

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, et al (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3: 109–136

    CAS  PubMed  Google Scholar 

  • Kannangara CG, Andersen RV, Pontoppidan B, Willows and von Wettstein D (1994) Enzymic and mechanistic studies on the conversion of glutamate to 5-aminolevulinate. In: Chadwick DJ and Ackrill K (eds), The Biosynthesis of the Tetrapyrrole Pigments, Ciba Foundation Symposium 180, pp 3–20. John Wiley and Sons, Chichester

    Google Scholar 

  • Kiel JAKW, Ten Berge AM and Venema G (1991) Nucleotide sequence of the Synechococcus sp PCC 7942 hemE gene encoding the homologue of mammalian uroporphyrinogen decarboxylase. J DNA Sequencing Map** 2: 415–418

    Google Scholar 

  • Knaust R, Scyfried B, Schmidt L, Schulz R and Senger H (1993) Phototransformation of monovinyl and divinyl protochlorophyllide by NADPH: protochlorophyllide oxidoreductase of barley expressed in Escherichia coli. J Photochem Photobiol Biol 20: 161–166

    CAS  Google Scholar 

  • Kobayashi M, Watanabe T, Nakazato M, Ikegami I, Hiyama T, Matsunaga T and Murata N (1988) Chlorophyll a′/P-700 and pheophytin a/P-680 stoichiometries in higher plants and cyanobacteria determined by HPLC analysis. Biochim Biophys Acta 936: 81–89

    CAS  Google Scholar 

  • Koncz C, Mayerhofer R, Koncz-Kalman Z, Nawrath C, Reiss B, Redei GP and Schell J (1990) Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidopsis thaliana EMBO J 9: 1137–1146

    Google Scholar 

  • Kotzabasis K and Senger H (1989) Biosynthesis of chlorophyll b in pigment mutant C-2A′ of Scenedesmus obliquus. Physiol Plant 76: 474–478

    CAS  Google Scholar 

  • Kruse E, Mock H-P and Grimm B (1995) Coproporphyrinogen III oxidase from barley and tobacco—sequence analysis and initial expression studies. Planta 196: 796–803

    CAS  PubMed  Google Scholar 

  • Kumar AM, Schaub U, Söll D and Ujwal ML (1996a) Glutamyltransfer RNA: At the crossroad between chlorophyll and protein biosynthesis. Trends in Plant Science 1: 371–376

    Article  Google Scholar 

  • Kumar AM, Csankovszki G and Söll D (1996b) A second differentially expressed glutamyl-tRNA reductase gene from Arabidopsis thaliana. Plant Mol Biol 30: 419–126

    Article  CAS  PubMed  Google Scholar 

  • Laferrière A and Beyer P (1991) Purification of geranylgeranyl diphosphate synthase from Sinapis alba etioplasts. Biochim Biophys Acta 1077: 167–172

    Google Scholar 

  • Lagarias DM, WU SH and Lagarias JC (1995) A typical phytochrome gene structure in the green alga Mesotaenium caldariorum. Plant Mol Biol 29: 1127–1142

    Article  CAS  PubMed  Google Scholar 

  • Lathrop JT and Timko MP (1993) Regulation by heme of mitochondrial protein transport through a conserved amino acid motif. Science 259: 522–525

    CAS  PubMed  Google Scholar 

  • Leeper FJ (1991) Intermediate steps in the biosynthesis of chlorophylls. In: Scheer H (ed) The Chlorophylls, pp 407–131. CRC Press, Boca Raton

    Google Scholar 

  • Lermontova I, Kruse E, Mock H-P and Grimm B (1997) Cloning and characterization of a plastidal and a mitochondrial isoform of tobacco protoporphyrinogen IX oxidase. Proc Natl Acad Sci USA 94: 8895–8900

    Article  CAS  PubMed  Google Scholar 

  • Li J and Timko MP (1996) The pc-1 phenotype of Chlamydomonas reinhardtii results from a deletion mutation in the nuclear gene for NADPH: protochlorophyllide oxidoreductase. Plant Mol Biol 30: 15–37

    CAS  PubMed  Google Scholar 

  • Li J, Goldschmidt-Clermont M and Timko MP (1993) Chloroplast encoded chlB is required for light-independent protochlorophyllide reductase activity in Chlamydomonas reinhardtii. Plant Cell 5: 1817–1829

    CAS  PubMed  Google Scholar 

  • Lim SH, Witty M, Wallace-Cook ADM, Ilag LI and Smith AG (1994) Porphobilinogen deaminase is encoded by a single gene in Arabidopsis thaliana and is targeted to the chloroplasts. Plant Mol Biol 26: 863–872

    Article  CAS  PubMed  Google Scholar 

  • Linden A, Vioque A and Sandmann G (1993) Isolation of a carotenoid biosynthesis gene coding for ζ-carotene desaturase from Anabaena PCC 7120 by heterologous complementation. FEMS Microbiol Lett 106: 99–104

    CAS  Google Scholar 

  • Linden H, Misawa N, Saito T and Sandmann G (1994) A novel carotenoid biosynthesis gene coding for ζ-carotene desaturase: Functional expression, sequence, and phylogenetic origin. Plant Mol Biol 24: 369–379

    Article  CAS  PubMed  Google Scholar 

  • Little HN and Jones OTG (1976) The subcellular localization and properties of the ferrochelatase of etiolated barley. Biochem J 156: 309–314

    CAS  PubMed  Google Scholar 

  • Litvin FF, Belyaeva OB and Ignatov NV (1993) The mechanism of final stages of chlorophyll and pheophytin biosynthesis and the problems of biogenesis of Photosystem II reaction centers. Biophizika (Moscow) 38: 919–939

    CAS  Google Scholar 

  • Liu XQ, Xu H and Huang C (1993) Chloroplast chlB gene is required for light-independent chlorophyll accumulation in Chlamydomonas reinhardtii. Plant Mol Biol 23: 297–308

    Article  CAS  PubMed  Google Scholar 

  • Louie GV, Brownlie PD, Lambert R, Cooper JB, Blundell TL, Wood SP, Malashkevich VN, Hadener A, Warren MJ and Shoolingin-Jordan PM (1996) The three-dimensional structure of Escherichia coli porphobilinogen deaminase at 1.7Å resolution. Proteins 25: 48–78

    Article  CAS  PubMed  Google Scholar 

  • Luo J and Lim K (1993) Order of uroporphyrinogen III decarboxylation on incubation of porphobilinogen and uroporphyrinogen III with erythrocyte uroporphyrinogen decarboxylase. Biochem J 289: 529–532

    CAS  PubMed  Google Scholar 

  • Madsen O, Sandal L, Sandal NN and Marcker KA (1993) A soybean coproporphyrinogen oxidase gene is highly expressed in root nodules. Plant Mol Biol 23: 35–43

    Article  CAS  PubMed  Google Scholar 

  • Marin E, Nussaume L, Quesada A, Gonneau M, Sotta B, Hugueney P, Frey A and Merion-Poll A (1996) Molecular identification of zeaxanthin epoxidase of Nicotians plum-baginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J 15: 2331–2342

    CAS  PubMed  Google Scholar 

  • Martin GEM, Timko MP and Wilks HM (1997) Purification and kinetic analysis of pea NADPH-protochlorophyllide oxido-reductase expressed as as a fusion with maltose binding protein in Escherichia coli. Biochem J. 325: 139–145

    CAS  PubMed  Google Scholar 

  • Matringe M, Camadro J-M, Labbe P and Scalla R (1989) Protoporphyrinogen oxidase as a molecular target for diphenyl ether herbicides. Biochem J 260: 231–235

    CAS  PubMed  Google Scholar 

  • Matringe M, Camadro J-M, Joyard J and Douce R (1994) Localization of ferrochelatase activity within mature pea chloroplasts. J Biol Chem 269: 15010–15015

    CAS  PubMed  Google Scholar 

  • Matters GL and Beale SI (1994) Structure and light-regulated expression of the gsa ene encoding the chlorophyll biosynthetic enzyme, glutamate 1-semialdehyde aminotransferase, in Chlamydomonas reinhardtii. Plant Mol Biol 24: 617–629

    Article  CAS  PubMed  Google Scholar 

  • Matters GL and Beale SI (1995a) Structure and expression of the Chlamydomonas reinhardtii alad gene encoding the chlorophyll biosynthetic enzyme, δ-aminolevulinic acid dehydratase (porphobilinogen synthase). Plant Mol Biol 27: 607–617

    Article  CAS  PubMed  Google Scholar 

  • Matters GL and Beale SI (1995b) Blue-light-regulated expression of two genes for early steps of chlorophyll biosynthesis in Chlamydomonas reinhardtii. Plant Physiol 109: 471–479

    CAS  PubMed  Google Scholar 

  • Man Y-H, Zheng P, Krishnasamy S, and Wang W-Y (1992) Light regulation of δ-aminolevulinic acid in Chlamydomonas. Plant Physiol 98: S99

    Google Scholar 

  • Mayer SM and Beale SI (1990) Light regulation of δ-aminolevulinic acid biosynthetic enzymes and tRNA in Euglena gracilis. Plant Physiol 94: 1365–1375

    CAS  Google Scholar 

  • Mayer SM and Beale SI (1991), δ-Aminolevulinic acid biosynthesis from glutamate in Euglena gracilis. Photocontrol of enzyme levels in a chlorophyll-free mutant. Plant Physiol 97: 1094–1102

    CAS  Google Scholar 

  • Medlock AE and Dailey HA (1996) Human coproporphyrinogen oxidase is not a metalloprotein. J Biol Chem 271: 32507–32510

    CAS  PubMed  Google Scholar 

  • McGarvey DJ and Croteau R (1995) Terpenoid metabolism. Plant Cell 7: 1015–1026

    Article  CAS  PubMed  Google Scholar 

  • Mitchell LW and Jaffe (1993) Porphobilinogen synthase from Escherichia coli is a Zn(II) metalloenzyme stimulated by Mg(II). Arch Biochem Biophys 300: 169–177

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto K, Tanaka R, Teramoto H, Masuda T, Tsuji H and Inokuchi H (1994) Nucleotide sequences of cDNA clones encoding ferrochelatase from barley and cucumber. Plant Physiol 105: 769–770

    Article  CAS  PubMed  Google Scholar 

  • Mock H-P, Trainotti L, Kruse E and Grimm B (1995) Isolation, sequencing and expression of cDNA sequences encoding uroporphyrinogen decarboxylase from tobacco and barley. Plant Mol Biol 28: 245–256

    Article  CAS  PubMed  Google Scholar 

  • Nakayama M, Masuda T, Sato N, Yamagata H, Bowler C, Ohta H, Shioi Y and Takamiya K (1995) Cloning, subcellular localization and expression of CHL1, a subunit of magnesiumchelatase in soybean. Biochem Biophys Res Commun 215: 422–428

    Article  CAS  PubMed  Google Scholar 

  • Narita S-I, Tanaka R, Ito T, Okada K, Taketani S and Inokuchi H (1996) Molecular cloning and characterization of a cDNA that encodes protoporphyrinogen oxidase of Arabidopsis thaliana. Gene 182: 169–175

    Article  CAS  PubMed  Google Scholar 

  • Nayar P and Begley TP (1996) Protochlorophyllide reductase III. Synthesis of a protochlorophyllide-dihydroflavin complex. Photochem Photobiol 63: 100–105

    CAS  PubMed  Google Scholar 

  • Nicholson-Guthrie CS and GD Guthrie (1987) Accumulation of protoporphyrin-lX by the chlorophyll-less y-y mutant of Chlamydomonas reinhardtii. Arch Biochem Biophys 252: 570–573

    CAS  PubMed  Google Scholar 

  • Nikulina K.V, Chekunova EM, Rüdiger W and Chunaev AS (1997) Genetic analysis of revertants of chlorophyll-b deficient mutants of Chlamydomonas reinhardtii. Genetika 33: 577–582

    Google Scholar 

  • Oelze-Karow H and Mohr H (1978) Control of chlorophyll b biosynthesis by phytochrome. Photochem Photobiol 27: 189–193

    CAS  Google Scholar 

  • Ogawa T, Inoue Y, Kitajima M and Shibata K. (1973) Action spectra for biosynthesis of chlorophylls a and b and β-carotene Photochem Photobiol 18: 229–235.

    CAS  Google Scholar 

  • Ohtsuka T, Ito H and Tanaka A (1997) Conversion of chlorophyll b to chlorophyll a and the assembly of chlorophyll with apoproteins by isolated chloroplasts. Plant Physiol 113: 137–147

    CAS  PubMed  Google Scholar 

  • Oliver RP and Griffiths WT (1981) Covalent labelling of the NADPH: protochlorophyllide oxidoreductase from etioplast membranes with (3H) N-phenylmaleimide. Biochem J 195: 93–101

    CAS  PubMed  Google Scholar 

  • O’Neill GP and Söll D (1990) Expression of the Synechocystis sp. PCC 6803 tRNAGlu gene provides tRNA for protein and chlorophyll biosynthesis. J Bacteriol 172: 6363–6371

    Google Scholar 

  • Orsat B, Monfort A, Chatellard P and Stutz E (1992) Map** and sequencing of an actively transcribed Euglena gracilis chloroplast gene (ccsA) homologous to the Arabidopsis thaliana nuclear gene cs (ch42). FEBS Lett 303: 181–184

    Article  CAS  PubMed  Google Scholar 

  • Oshio H, Shibata H, Mito N, Yamamoto M, Harris EH, Gillham NW, Boynton JE and Sato R (1993) Isolation and characterization of a Chlamydomonas reinhardtii mutant resistant to photobleaching herbicides. Z Naturforsch 48c: 339–344

    Google Scholar 

  • Pecker I, Gabbay R, Cunningham FX Jr and Hirschberg J (1996) Cloning and characterization of the cDNA for lycopene β-cyclase from tomato reveals decrease in its expression during fruit ripening. Plant Mol Biol 30: 807–919

    Article  CAS  PubMed  Google Scholar 

  • Peschek GA, Hinterstoisser B, Pineau B and Missbichler A (1989) Light-independent NADPH-protochlorophyllide oxidoreductase activity in purified plasma membrane from the cyanobacterium Anacyctis nidulans. Biochem Biophys Res Commun 162: 71–78

    Article  CAS  PubMed  Google Scholar 

  • Peters JW, Fisher K. and Dean DR (1995) Nitrogenase structure and function: A biochemical-genetic perspective. Annu Rev Microbiol 49: 335–366

    Article  CAS  PubMed  Google Scholar 

  • Plumley FG and Schmidt GW (1995) Light-harvesting chlorophyll-a/b complexes: Interdependent pigment synthesis and protein assembly. Plant Cell 7: 689–704

    Article  CAS  PubMed  Google Scholar 

  • Pontoppidan B and Kannangara CG (1994) Purification and partial characterization of barley glutamyl-tRNAGLU reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. Eur J Biochem 225: 529–537

    Article  CAS  PubMed  Google Scholar 

  • Porra RJ and Lascelles J (1968) Studies on ferrochelatase: The enzymatic formation of haem in proplastids, chloroplasts and plant mitochondria. Biochem J 108: 343–348

    CAS  PubMed  Google Scholar 

  • Porra RJ, Schâfer W, Cmiel E, Katheder I and Scheer H (1993) Derivation of the formyl-group oxygen of chlorophyll-b from molecular oxygen in greening leaves of a higher plant (Zea mays). FEBS Lett 323: 31–34

    Article  CAS  PubMed  Google Scholar 

  • Quail PH, Boylan MT, Parks BM, Short TW, Xu Y and Wagner D (1995) Phytochromes: Photosensory perception and signal transduction. Science 268: 675–680

    CAS  PubMed  Google Scholar 

  • Radchenko MI (1977a) Chemotaxonomic study of pigments in Chlamydomonas Ehr. species. I. Qualitative composition and qualitative content of pigments in Chlamydomonas spp. under optimal conditions of medium. Ukr Bot Zh 34: 367–371

    CAS  Google Scholar 

  • Radchenko MI (1977b) Chemotaxonomic study of pigments in Chlamydomonas Ehr. species. I. Qualitative composition and quantitative content of pigments in Chlamydomonas spp. under extreme conditions of medium. Ukr Bot Zh 34: 594–603

    Google Scholar 

  • Randolph-Anderson BL, Sato R, Johnson AM, Harris EH, Hauser CR, Oeda K, Ishige F, Gillham NW and Boynton JE (1998) Isolation and characterization of a mutant protoporphyrinogen oxidase gene conferring herbicide resistance from a nuclear genomic library of Chlamydomonas reinhardtii. Plant Mol Biol, in press

    Google Scholar 

  • Re EB, Jones D and Learned RM (1995) Co-expression of native and introduced genes reveals cryptic regulation of HMG CoA reductase expression in Arabidopsis. Plant J 7: 771–784

    Article  CAS  PubMed  Google Scholar 

  • Rebeiz CA, Parham R, Fasoula DA and Ioannides IM (1994) Chlorophyll a biosynthetic heterogeneity. In: Chadwick DJ and Ackrill K (eds), The Biosynthesis of Tetrapyrrole Pigments, Ciba Foundation Symposium 180, pp 177–189. John Wiley and Sons, Chichester

    Google Scholar 

  • Reinbothe S and Reinbothe C (1996) The regulation of enzymes involved in chlorophyll biosynthesis. Eur J Biochem 237: 323–343

    Article  CAS  PubMed  Google Scholar 

  • Reinbothe S, Runge S, Reinbothe C, van Cleve B and Apel K. (1995) Substrate-dependent transport of the NADPH: protochlorophyllide oxidoreductase into isolated plastids. Plant Cell 7: 161–172

    CAS  PubMed  Google Scholar 

  • Reinbothe S, Reinbothe C, Lebedev N and Apel K (1996a) PORA and PORB, two light-dependent protochlorophyllide-reducing enzymes of angiosperm chlorophyll biosynthesis. The Plant Cell 8: 763–769

    CAS  PubMed  Google Scholar 

  • Reinbothe S, Reinbothe C, Apel and Lebedev N (1996b) Evolution of chlorophyll biosynthesis—The challenge to survive photooxidation. Cell 86: 703–705

    Article  CAS  PubMed  Google Scholar 

  • Reith M and Munholland J (1993) A high resolution gene map of the chloroplast genome of the red alga Porphyra purpurea. Plant Cell 5:465–475

    Article  CAS  PubMed  Google Scholar 

  • Richard M, Tremblay C and Bellemare G (1994) Chloroplastic genomes of Ginko biloba and Chlamydomonas moewusii contain a chlB gene encoding one subunit of a light-independent protochlorophyllide reductase. Curr Genet 26: 159–165.

    Article  CAS  PubMed  Google Scholar 

  • Richards WR (1993) Biosynthesis of the chlorophyll chromophore of pigmented thylakoid proteins. In: Sundqvist C and Ryberg M (eds), Pigment-Protein Complexes in Plastids: Synthesis and Assembly, pp 91–178. Academic Press, New York

    Google Scholar 

  • Rieble S and Beale SI (1991a) Separation and partial characterization of enzymes catalyzing S-aminolevulinic acid formation in Synechocystis sp. PCC 6803. Arch Biochem Biophys 289: 289–297

    Article  CAS  PubMed  Google Scholar 

  • Rieble S and Beale SI (1991b) Purification of glutamyl-tRNA reductase from Synechocystis sp. PCC 6803. J Biol Chem 266: 9740–9744

    CAS  PubMed  Google Scholar 

  • Rochaix J-D (1996) Post-transcriptional regulation of gene expression in Chlamydomonas reinhardtii. Plant Mol Biol 32: 327–341

    Article  CAS  PubMed  Google Scholar 

  • Rogers K and Söll D (1993) Discrimination among tRNAs intermediate in glutamate and glutamine acceptor identity. Biochemistry 32: 14210–14219

    CAS  PubMed  Google Scholar 

  • Roitgrund C and Mets LJ (1990) Localization of two novel chloroplast genome functions: trans-splicing of RNA and protochlorophyllide reduction. Curr Genet 17: 147–153

    Article  CAS  Google Scholar 

  • Rosé S, Frydman RB, de los Santos C, Sburlati A, Valasinas A and Frydman B (1988) Spectroscopic evidence for a porphobilinogen deaminase-tetrapyrrole complex that is an intermediate in the biosynthesis of uroporphyrinogen III. Biochemistry 27: 4871–4879

    PubMed  Google Scholar 

  • Rüdiger W (1993) Esterification of chlorophyllide and its implications for thylakoid development. In: Sundqvist C and Ryberg M (eds), Pigment-Protein Complexes in Plastids: Synthesis and Assembly, pp 219–240. Academic Press, Inc., New York

    Google Scholar 

  • Sager R and Palade GE (1954) Chloroplast structure in green and yellow strains of Chlamydomonas. Exp Cell Res 7: 584–588

    CAS  PubMed  Google Scholar 

  • Sager R and Zalokar M (1958) Pigments and photosynthesis in a carotenoid-deficient mutant of Chlamydomonas. Nature 182: 98–100

    CAS  PubMed  Google Scholar 

  • Sandmann G (1994) Carotenoid biosynthesis in microorganisms and plants. Eur J Biochem 223: 7–24

    Article  CAS  PubMed  Google Scholar 

  • Sangwan I and O’Brian MR (1993) Expression of the soybean (Glycine max) glutamate 1-semialdehyde aminotransferase gene in symbiotic root nodules. Plant Physiol 102: 829–834

    Article  CAS  PubMed  Google Scholar 

  • Sato R, Yamamoto M, Shibata H, Oshio H, Harris EH, Gillham NW and Boynton JE (1994) Characterization of a mutant of Chlamydomonas reinhardtii resistant to protoporphyrinogen oxidase inhibitors. In: Duke SO and Rebeiz CA (eds) Porphyric Pesticides: Chemistry, Toxicology and Pharmaceutical Applications, ACS Symposium Series 559, pp 91–104. American Chemical Society, Washington, DC

    Google Scholar 

  • Schneegurt MA and Beale SI (1988) Characterization of the RNA required for biosynthesis of δ-aminolevulinic acid from glutamate: Purification by anticodon-based affinity chromatography and determination that the UUC glutamate anticodon is a general requirement for function in ALA biosynthesis. Plant Physiol 86: 497–504

    CAS  Google Scholar 

  • Schneegurt MA and Beale SI (1992) Origin of the chlorophyll b formyl oxygen atom in Chlorella vulgaris. Biochemistry 31: 11677–11683

    Article  CAS  PubMed  Google Scholar 

  • Schneegurt MA, Rieble S and Beale SI (1988) The tRNA required for in vitro δ-aminolevulinicacid formation from glutamate in Synechocystis extracts. Plant Physiol 88: 1358–1366

    CAS  Google Scholar 

  • Schoch S, Hehlein C and Rüdiger W (1980) Influence of anaerobiosis on chlorophyll biosynthesis in greening oat seedlings (Avena sativum L.). Plant Physiol 66: 576–579

    CAS  Google Scholar 

  • Schoch S, Helfrich M, Wiktorsson B, Sundqvist C, Rüdiger W and Ryberg M (1995) Photoreduction of protopheophorbide with NADPH-protochlorophyllide oxidoreductase from etiolated wheat (Triticum aestivum) Eur J Biochem 229: 291–298

    Article  CAS  PubMed  Google Scholar 

  • Schön A, Krupp G, Gough S, Berry-Lowe S, Kannangara CG and Söll D (1986) The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature 322: 281–284

    Article  PubMed  Google Scholar 

  • Sharif AL, Smith AC and Abell C (1989) Isolation and characterization of a cDNA clone for a chlorophyll synthesis enzyme from Euglena gracilis: The chloroplast hydroxy-methylbilane synthase (porphobilinogen deaminase) is synthesized with a very long transit peptide in Euglena. Eur J Biochem 184: 353–359

    Article  CAS  PubMed  Google Scholar 

  • Shedbalker VP, Lonnides IM and Rebeiz C (1991) Chloroplast Biogenesis. Detection of monovinyl protochlorophyll(ide) b in plants. J Biol Chem 266: 17151–17157

    Google Scholar 

  • Shoolingin-Jordan PM (1995) Porphobilinogen deaminase and uroporphyrinogen III synthase: Structure, molecular biology, and mechanism. J Bioener Biomem 27: 181–195

    CAS  Google Scholar 

  • Smith AG (1986) Enzymes for chlorophyll synthesis in develo** peas. In: Akoyunoglou G and Senger H (eds), Regulation of Chloroplast Differentiation, pp 49-54. Alan R. Liss, New York

    Google Scholar 

  • Smith AG (1988) Subcellular localization of two porphyrin-synthesis enzymes in Pisum sativum (pea) and Arum (cuckoopint) species. Biochem J 249: 423–428

    CAS  PubMed  Google Scholar 

  • Smith AG, Marsh O and Elder GH (1993) Investigation of the subcellular location of the totrapyrrole-biosynthesis enzyme coproporphyrinogen oxidase in higher plants. Biochem J 292: 503–508

    CAS  PubMed  Google Scholar 

  • Smith AG, Santana MA, Wallace-Cook ADM, Roper JM and Labbe-Bois R (1994) Isolation of a cDNA encoding chloroplast ferrochelatae from Arabidopsis thaliana by functional complementation of a yeast mutant. J Biol Chem 269: 13405–13413

    CAS  PubMed  Google Scholar 

  • Smith CA, Suzuki JY and Bauer CE (1996) Cloning and characterization of the chlorophyll biosynthesis gene chlM from Synechocystis PCC 6803 by complementation of a bacteriochlorophyll biosynthesis mutant of Rhodobacter capsulatus. Plant Mol Biol 30: 1307–1314

    Article  CAS  PubMed  Google Scholar 

  • Soll J, Schultz G, Rüdiger W and Benz J (1983) Hydrogenation of geranylgeranoil: Two pathways exist in spinach chloroplasts. Plant Physiol 71: 849–854

    CAS  Google Scholar 

  • Spano AJ and Timko MP (1991) Isolation, characterization and partial amino acid sequence of a chloroplast-localized porphobilinogen deaminase from pea, (Pisum sativum L.). Biochim Biophys Acta 1076: 29–36

    CAS  PubMed  Google Scholar 

  • Spencer P and Jordan PM (1995) Characterization of the two 5-aminolevulinic acid binding sites, the A-and P-sites, of 5-aminolevulinic acid dehydratase from Escherichia coli. Biochem J 305: 151–158

    CAS  PubMed  Google Scholar 

  • Stange-Thomann N, Thomann H-U, Lloyd AJ, Lyman H and Söll D (1994) A point mutation in Euglena gracilis chloroplast tRNAGLU uncouples protein and chlorophyll biosynthesis. Proc Natl Acad Sci (USA) 91: 7947–7951

    CAS  Google Scholar 

  • Stermer BA, Bianchini GM and Korth KL (1994) Regulation of HMG-CoA reductase activity in plants. J Lipid Res 35: 1133–1140

    CAS  PubMed  Google Scholar 

  • Stolbova AV (1971) Genetic analysis of pigment mutations of Chlamydomonas reinhardtii. II. Analysis of the inheritance of mutations of chlorophyll deficiency and light sensitivity in crosses with the wild-type. Genetika 7: 90–94

    CAS  Google Scholar 

  • Sugiura M (1992) The chloroplast genome. Plant Mol Biol 19: 149–168

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Gantt E and Cunningham FX Jr (1996) Cloning and functional analysis of the β-carotene hydrolase of Arabidopsis thaliana. J Biol Chem 271: 24349–24352

    CAS  PubMed  Google Scholar 

  • Suzuki JY and Bauer CE (1992) Light-independent chlorophyll biosynthesis: Involvement of the chloroplast gene chlL (frxC). Plant Cell 4: 929–940

    Article  CAS  PubMed  Google Scholar 

  • Suzuki JY and Bauer CE (1995) Altered monovinyl and divinyl protochlorophyllide pools in bchJ mutants of Rhodobacter capsulatus. J Biol Chem 270: 3732–3740

    CAS  PubMed  Google Scholar 

  • Sylvers LA, Rogers KC, Shimizu M, Ohtsuka E and Söll D (1993) A 2-thiouridine derivative in tRNAGLU is a positive determinant for aminoacylation by Escherichia coli glutamyl-tRNA synthetase. Biochemistry 32: 3836–3841

    Article  CAS  PubMed  Google Scholar 

  • Tanaka R, Yoshida K, Nakayashiki T, Masuda T, Tsuji H, Inokuchi H and Tanaka A (1996) Differential expression of two hemA mRNAs encoding glutamyl-tRNA reductase proteins in greening cucumber seedlings. Plant Physiol 110: 1223–1230

    Article  CAS  PubMed  Google Scholar 

  • Thomas H (1997) Tansley Review No. 92, Chlorophyll: A symptom and regulator of plastid development. New Phytol 136:163–181

    Article  CAS  Google Scholar 

  • Thomas J and Weinstein JD (1990) Measurement of heme efflux and heme content in isolated develo** chloroplasts. Plant Physiol 94: 1414–1423

    CAS  Google Scholar 

  • von Wettstein D, Gough S and Kannangara CG (1995) Chlorophyll biosynthesis. Plant Cell 7: 1039–1057

    Google Scholar 

  • Walker CJ and Griffiths WT (1988) Protochlorophyllide reductase: A flavoprotein? FEBS Lett 239: 259–262

    Article  CAS  Google Scholar 

  • Walker CJ and Weinstein JD (1991) Further characterization of the magnesium chelatase in isolated develo** cucumber chloroplasts: substrate specificity, regulation, intactness, and ATP requirements. Plant Physiol 95: 1189–1196

    CAS  Google Scholar 

  • Walker CJ, Mansfield KE, Smith KM and Castelfranco PA (1989) Incorporation of atmospheric oxygen into the carbonyl functionality of the protochlorophyllide isocyclic ring. Biochem J 257: 599–602

    CAS  PubMed  Google Scholar 

  • Walker CJ, Castelfranco PA and Whyte BJ (1991) Synthesis of divinyl protochlorophyllide. Enzymological properties of the Mg-protoporphyrin IX monomethylester oxidative cyclase system. Biochem J 276: 691–697

    CAS  PubMed  Google Scholar 

  • Wang, W-Y (1978) Genetic control of chlorophyll biosynthesis in Chlamydomonas reinhardtii. Int Rev Cytol Suppl 8: 335–364

    Google Scholar 

  • Wang W-Y, Wang WL, Boynton JE and Gillham NE (1974) Genetic control of chlorophyll biosynthesis in Chlamydomonas. Analysis of mutants at two loci mediating the conversion of protoporphyrin-lX to magnesium-protoporphyrin. J Cell Biol 63: 806–823

    Article  CAS  PubMed  Google Scholar 

  • Wang W-Y, Boynton JE, Gillham NE and Gough S (1975) Genetic control of chlorophyll biosynthesis in Chlamydomonas. Analysis of a mutant affecting synthesis of δ-aminolevulinicacid. Cell 6: 75–84

    Article  CAS  PubMed  Google Scholar 

  • Wang W-Y, Boynton JE and Gillham NE (1977) Genetic control of chlorophyll biosynthesis. Effect of increased δ-aminolevulinicacid synthesis on the phenotype of the y-1 mutant of Chlamydomonas. Mol Gen Genet 152: 7–12

    Article  CAS  Google Scholar 

  • Wang W-Y, Huang D-D, Stachon D, Gough SP and Kannangara CG (1984) Purification, characterization, and fractionation of the δ-aminolevulinicacid synthesizing enzymes from light-grown Chlamydomonas reinhardtii cells. Plant Physiol 74: 569–575

    CAS  Google Scholar 

  • Watanabe T, Nakazato M, Mazaki H, Hongru A, Konno M, Saitoh S and Honda K (1985) Chlorophyll a epimer and phcophytin a in green leaves. Biochim Biophys Acta 807: 110–117

    CAS  Google Scholar 

  • Watanabe T, Kobayashi M, Nakazato M, Ikegami I and Hiyama T (1987) Chlorophyll a’ in photosynthetic apparatus: Reinvestigation. In: Biggins J (ed), Progress in Photosynthesis Research, Vol I, pp 303–306. Martimis Nijhoff, Boston

    Google Scholar 

  • Weber T and Bach TJ (1994) Conversion of acetyl-coenzyme A into 3-hydroxy-3-methylglutaryl coenzyme A in radish seedlings: Evidence of a single monomeric protein catalyzing a Fe11/quinone-stimulated double condensation reaction. Biochim Biophys Acta 1211: 85–96

    CAS  PubMed  Google Scholar 

  • Weinstein JD, Mayer SM and Beale SI (1987) Formation of δ-aminolevulinicacid from glutamie acid in algal extracts: Separation into an RNA and three required enzyme components by serial affinity chromatography. Plant Physiol 84: 244–250

    CAS  Google Scholar 

  • Weinstein JD, Howell RW, Leverette RD, Grooms SY, Brignola PS, Mayer SM and Beale SI (1993) Heine inhibition of δ-aminolevulinicacid synthesis is enhanced by glutathione in cell-free extracts of Chlorella. Plant Physiol 101: 657–665

    CAS  PubMed  Google Scholar 

  • Whyte BJ and Castelfranco PA (1993) Further observations on the Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase system. Biochem J 290: 355–359

    CAS  PubMed  Google Scholar 

  • Whyte BJ and Griffiths WT (1993) 8-Vinyl reduction and chlorophyll a biosynthesis in higher plants. Biochem J 291: 939–944

    CAS  PubMed  Google Scholar 

  • Wilks HM and Timko MP (1995) A light-dependent complementation system for analysis of NADPH: protochlorophyllide oxidoreductase. Identification and mutagenesis of two conserved residues that are essential for enzyme activity. Proc Natl Acad Sci (USA) 92: 724–728

    CAS  Google Scholar 

  • Willows RD, Kannangara CO and Pontoppidan B (1995) Nucleotides of tRNAGLU involved in recognition by barley chloroplast glutamyl-tRNA synthetase and glutamyl-tRNA reductase. Biochim Biophys Acta 1263: 228–234

    PubMed  Google Scholar 

  • Willows RD, Gibson LCD, Kannangara CG, Hunter CN and von Wettstein D (1996) Three separate proteins constitute the magnesium chelatase of Rhodobacter sphaeroides. Eur J Biochem 235: 438–443

    Article  CAS  PubMed  Google Scholar 

  • Witty, M, Wallace-Cook ADM, Albrecht H, Spano AJ, Michel H, Shabanowitz J, Hunt DF, Timko MP and Smith AG (1993) Structure and expression of chloroplast-localized porpho-bilinogen deaminase from pea (Pisum sativum L.) isolated by redundant PCR. Plant Physiol 103: 139–147

    Article  CAS  PubMed  Google Scholar 

  • **e Z and Merchant S (1996) The plastid-encoded ccsA gene is required for heme attachment to chloroplast c-type cytochromes. J Biol Chem 271: 4632–4639

    CAS  PubMed  Google Scholar 

  • Yamamoto HY and Bassi R (1996) Carotenoids: localization and function. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis, pp 539–583. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Zhang L and Guarente L (1995) Home binds to a short sequence that serves a regulatory function in diverse proteins. EMBO J 14: 313–320

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Timko, M.P. (1998). Pigment Biosynthesis: Chlorophylls, Heme, and Carotenoids. In: Rochaix, J.D., Goldschmidt-Clermont, M., Merchant, S. (eds) The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas. Advances in Photosynthesis and Respiration, vol 7. Springer, Dordrecht. https://doi.org/10.1007/0-306-48204-5_20

Download citation

  • DOI: https://doi.org/10.1007/0-306-48204-5_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5174-0

  • Online ISBN: 978-0-306-48204-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation