This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbotts, A. P., Preston, V. G., Hughes, M., Patel, A. H., and Stow, N. D., 2000, Interaction of the herpes simplex virus type 1 packaging protein UL15 with full-length and deleted forms of the UL28 protein. J. Gen. Virol. 81 Pt 12: 2999–3009.

    PubMed  CAS  Google Scholar 

  • Addison, C., Rixon, F. J., and Preston, V. G., 1990, Herpes simplex virus type 1 UL28 gene product is important for the formation of mature capsids. J. Gen. Virol. 71: 2377–2384.

    Article  PubMed  CAS  Google Scholar 

  • Adelman, K., Salmon, B., and Baines, J. D., 2001, Herpes simplex virus DNA packaging sequences adopt novel structures that are specifically recognized by a component of the cleavage and packaging machinery. Proc. Natl. Acad. Sci. U.S.A 98: 3086–3091.

    Article  PubMed  CAS  Google Scholar 

  • Adrian, M., Dubochet, J., Lepault, J., and McDowall, A. W., 1984, Cryo-electron microscopy of viruses. Nature 308: 32–36.

    Article  PubMed  CAS  Google Scholar 

  • Al-Kobaisi, M. F., Rixon, F. J., McDougall, I., and Preston, V. G., 1991, The herpes simplex virus UL33 gene product is required for the assembly of full capsids. Virology 180: 380–388.

    Article  PubMed  CAS  Google Scholar 

  • Ali, M. A., Forghani, B., and Cantin, E. M., 1996, Characterization of an essential HSV-1 protein encoded by the UL25 gene reported to be involved in virus penetration and capsid assembly. Virology 216: 278–283.

    Article  PubMed  CAS  Google Scholar 

  • Baines, J. D., Cunningham, C., Nalwanga, D., and Davison, A., 1997, The UL15 gene of herpes simplex virus type 1 contains within its second exon a novel open reading frame that is translated in frame with the UL15 gene product. J. Virol. 71: 2666–2673.

    PubMed  CAS  Google Scholar 

  • Baines, J. D., Poon, A. P., Rovnak, J., and Roizman, B., 1994, The herpes simplex virus 1 UL15 gene encodes two proteins and is required for cleavage of genomic viral DNA. J. Virol. 68: 8118–8124.

    PubMed  CAS  Google Scholar 

  • Baines, J. D. and Roizman, B., 1992, The cDNA of ULI5, a highly conserved herpes simplex virus 1 gene, effectively replaces the two exons of the wild-type virus. J. Virol. 66: 5621–5626.

    PubMed  CAS  Google Scholar 

  • Baker, T. S., Newcomb, W. W., Booy, F. P., Brown, J. C., and Steven, A. C., 1990, Three-dimensional structures of maturable and abortive capsids of equine herpesvirus 1 from cryoelectron microscopy. J. Virol. 64: 563–573.

    PubMed  CAS  Google Scholar 

  • Barnett, J. W., Eppstein, D. A., and Chan, H. W., 1983, Class I defective herpes simplex virus DNA as a molecular cloning vehicle in eucaryotic cells. J. Virol. 48: 384–395.

    PubMed  CAS  Google Scholar 

  • Bataille, D. and Epstein, A., 1994, Herpes simplex virus replicative concatemers contain L components in inverted orientation. Virology 203: 384–388.

    Article  PubMed  CAS  Google Scholar 

  • Bataille, D. and Epstein, A. L., 1997, Equimolar generation of the four possible arrangements of adjacent L components in herpes simplex virus type 1 replicative intermediates. J. Virol. 71: 7736–7743.

    PubMed  CAS  Google Scholar 

  • Baxter, M. K. and Gibson, W. The putative cytomegalovirus triplex proteins minor capsid protein (mCP) and mCP-binding protein (MCP-BP) form a heterotrimeric complex that localizes to the cell nucleus in the absence of other viral proteins. 22nd International Herpesvirus Workshop. 1997.

    Google Scholar 

  • Bazinet, C. and King, J., 1985, The DNA translocating vertex of dsDNA bacteriophage. Annu. Rev. Microbiol. 39: 109–129.

    Article  PubMed  CAS  Google Scholar 

  • Becker, A. and Murialdo, H., 1990, Bacteriophage lambda DNA: the beginning of the end. J. Bacteriol. 172: 2819–2824.

    PubMed  CAS  Google Scholar 

  • Black, L.W., 1988, DNA packaging in dsDNA bacteriophages. In “The Bacteriophages Vol. 2” (R. Calendar, Ed.), pp. 321–373. Plenum Press, New York.

    Google Scholar 

  • Black, L. W., 1989, DNA packaging in dsDNA bacteriophages. Annu. Rev. Microbiol. 43: 267–292.

    Article  PubMed  CAS  Google Scholar 

  • Black, L. W., Showe, M. K., and Steven, A. C., 1994, Morphogenesis of the T4 head. In “Bacteriophage T4” (J. D. Karam, Ed.), pp. 218–258. ASM Press, Washington, D.C.

    Google Scholar 

  • Bogner, E., Radsak, K., and Stinski, M. F., 1998, The gene product of human cytomegalovirus open reading frame UL56 binds the pac motif and has specific nuclease activity. J Virol. 72: 2259–2264.

    PubMed  CAS  Google Scholar 

  • Booy, F. P., Newcomb. W. W., Trus, B. L., Brown, J.C., Baker, T. S., and Steven, A. C., 1991, Liquid-crystalline, phage-like packing of encapsidated DNA in herpes simplex virus. Cell 64: 1007–1015.

    Article  PubMed  CAS  Google Scholar 

  • Broll. H., Buhk, H. J., Zimmermann, W., and Goltz, M., 1999, Structure and function of the prDNA and the genomic termini of the gamma2-herpesvirus bovine herpesvirus type 4. J. Gen. Virol. 80 (Pt 4): 979–986.

    PubMed  CAS  Google Scholar 

  • Buerger, I., Reefschlaeger, J., Bender, W., Eckenberg, P., Klenk, H. D., Ruebsamen-Waigmann, H., and Hallenberger, S. Mechanism of antiviral action of BAY 38-4766-resistance to a novel non-nucleosidc inhibitor of cytomegalovirus replication. 2001 Cytomegalovirus Workshop, 72. 2001.

    Google Scholar 

  • Casjens, S. and Hendrix, R., 1988, Control mechanisms in dsDNA bacteriophage assembly. In “The Bacteriophages” (R. Calendar, Ed.), Vol. 1, pp. 15–91. Plenum Press, New York.

    Google Scholar 

  • Catalano, C. E., 2000, The terminase enzyme from hacteriophage lambda: a DNA-packaging machine. Cell Mol. Life Sci. 57: 128–148.

    Article  PubMed  CAS  Google Scholar 

  • Catalano, C. E., Cue, D., and Feiss, M., 1995, Virus DNA packaging: the strategy used by phage lambda. Molecular Microbiology 16: 1075–1086.

    PubMed  CAS  Google Scholar 

  • Cavalcoli, J. D., Baghian, A., Homa, F. L., and Kousoulas, K. G., 1993, Resolution of genotypic and phenotypic properties of herpes simplex virus type 1 temperature-sensitive mutant (KOS) tsZ47: evidence for allelic complementation in the UL28 gene. Virology 197: 23–34.

    Article  PubMed  CAS  Google Scholar 

  • Cerritelli, M. E., Cheng. N., Rosenberg, A. H., McPherson, C. E., Booy, F. P., and Steven, A. C., 1997, Encapsidated conformation of bacteriophage T7 DNA. Cell 91: 271–280.

    Article  PubMed  CAS  Google Scholar 

  • Chang, Y. E., Poon, A. P., and Roizman, B., 1996, Properties of the protein encoded by the UL32 open reading frame of herpes simplex virus type 1. J. Virol. 70: 3938–3946.

    PubMed  CAS  Google Scholar 

  • Chee, M. S., Bankier, A. T., Beck, S., Sohni, R., Brown, C. M., Cerny, R., Horsnell, T., Hutchinson, C. A., Kouzarides. T., Marignetti, J. A., Preddie, E., Salchwell, S. C., Tomlinson, P., Weston, K., and Barrell, B. G., 1990, Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. In “Cytomegaloviruses” (J. K. McDougall, Ed.), Vol. 154, pp. 125–169. Springer-Verlag, New York.

    Google Scholar 

  • Chen, D. H., Jiang, H., Lee, M., Liu, F., and Zhou, Z. H., 1999, Three-dimensional visualization of tegument/capsid interactions in the intact human cytomegalovirus. Virology 260:10–16.

    Article  PubMed  CAS  Google Scholar 

  • Chou, J. and Roizman, B., 1985, Isomerization of herpes simplex virus 1 genome: identification of the cis-acting and recombination sites within the domain of the a sequence. Cell 41: 803–811.

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury, S. I., Buhk, H. J., Ludwig, H., and Hammerschmidt, W., 1990, Genomic termini of equine herpesvirus 1. J. Virol. 64: 873–880.

    PubMed  CAS  Google Scholar 

  • Chung, Y. B., Nardone, C., and Hinkle, D. C., 1990, Bacteriophage T7 DNA packaging. III. A “hairpin” end formed on T7 concatemers may be an intermediate in the processing reaction. J. Mol. Biol. 216: 939–948.

    PubMed  CAS  Google Scholar 

  • Church, G. A., Dasgupta, A., and Wilson, D. W., 1998, Herpes simplex viurus DNA packaging without measurable DNA synthesis. J. Virol. 72: 2745–2751.

    PubMed  CAS  Google Scholar 

  • Dasgupta, A. and Wilson, D. W., 1999, ATP depletion blocks herpes simplex virus DNA packaging and capsid maturation. J. Virol. 73: 2006–2015.

    PubMed  CAS  Google Scholar 

  • Davison, A. J., 1984, Structure of the genome termini of varicella-zoster virus. J. Gen. Virol. 65 (Pt 11): 1969–1977.

    PubMed  CAS  Google Scholar 

  • Davison, A. J. and Wilkie, N. M., 1981, Nucleotide sequences of the joint between the L and S segments of herpes simplex virus types 1 and 2. J. Gen. Virol. 55: 315–331.

    PubMed  CAS  Google Scholar 

  • Deiss, L. P., Chou, J., and Frenkel, N., 1986, Functional domains within the a sequence involved in the cleavage-packaging of herpes simplex virus DNA. J. Virol. 59: 605–618.

    PubMed  CAS  Google Scholar 

  • Deiss, L. P. and Frenkel, N., 1986, Herpes simplex virus amplicon: cleavage of concatameric DNA is linked to packaging and involves amplification of the terminally reiterated a sequence. J. Virol. 57: 933–941.

    PubMed  CAS  Google Scholar 

  • Desai, P., DeLuca, N. A., and Person, S., 1998, Herpes simplex virus type 1 VP26 is not essential for replication in cell culture but influences production of infectious virus in the nervous system of infected mice. Virology 247: 115–124.

    Article  PubMed  CAS  Google Scholar 

  • Desai, P. and Person, S., 1999, Second site mutations in the N-terminus of the major capsid protein (VP5) overcome a block at the maturation cleavage site of the capsid scaffold proteins of herpes simplex virus type 1. Virology 261: 357–366.

    Article  PubMed  CAS  Google Scholar 

  • Dolan, A., Arbuckle, M., and McGeoch, D. J., 1991, Sequence analysis of the splice junction in the transcript of herpes simplex virus type 1 gene UL 15. Virus Research 20: 97–104.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, J. J. and Studier, F. W., 1983, Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J. Mol. Biol. 166: 477–535.

    PubMed  CAS  Google Scholar 

  • Earnshaw, W. C. and Casjens, S. R., 1980, DNA packaging by the double-stranded DNA bacteriophages. Cell 21: 319–331.

    PubMed  CAS  Google Scholar 

  • Ebeling, A., Keil, G. M., Knust, E., and Koszinowski, U. H., 1983, Molecular cloning and physical map** of murine cytomegalovirus DNA. J. Virol. 47: 421–433.

    PubMed  CAS  Google Scholar 

  • Frenkel, N., 1981, Defective interfering herpesviruses. In “The Human Herpesviruses — An Interdisciplinary Perspective” (A. H. Hahmias, W. R. Dowdle, and R. S. Schinazy, Eds.), pp. 91–120. Elsevier Science Publishing, Inc., New York.

    Google Scholar 

  • Fujisawa, H., Kimura, M., and Hashimoto, C., 1990, In vitro cleavage of the concatemer joint of bacteriophage T3 DNA. Virology 174: 26–34.

    Article  PubMed  CAS  Google Scholar 

  • Fujisawa, H. and Sugimoto, K., 1983, On the terminally redundant sequences of bacteriophage T3 DNA. Virology 124: 251–258.

    Article  PubMed  CAS  Google Scholar 

  • Gao, M. and Isom, H. C., 1984, Characterization of the guinea pig cytomegalovirus genome by molecular cloning and physical map**. J. Virol. 52: 436–447.

    PubMed  CAS  Google Scholar 

  • Garber, D. A., Beverley, S. M., and Coen, D. M., 1993, Demonstration of circularization of herpes simplex virus DNA following infection using pulsed field gel electrophoresis. Virology 197: 459–462.

    Article  PubMed  CAS  Google Scholar 

  • Giesen, K., Radsak, K., and Bogner, E., 2000b, Targeting of the gene product encoded by ORF UL56 of human cytomegalovirus into viral replication centers. FEBS Lett. 471: 215–218.

    Article  PubMed  CAS  Google Scholar 

  • Giesen, K., Radsak, K., and Bogner, E., 2000a, The potential terminase subunit of human cytomegalovirus, pUL56, is translocated into the nucleus by its own nuclear localization signal and interacts with importin alpha [In Process Citation]. J. Gen. Virol. 81 Pt 9: 2231–2244.

    PubMed  CAS  Google Scholar 

  • Guo, P., Peterson, C., and Anderson, D., 1987, Prohead and DNA-gp3-dependent ATPase activity of the DNA packaging protein gp 16 of bacteriophage phi 29. J. Mol. Biol. 197: 229–236.

    Google Scholar 

  • Hammerschmidt, W., Ludwig, H., and Buhk, H. J., 1988, Specificity of cleavage in replicative-form DNA of bovine herpesvirus 1. J Virol. 62: 1355–1363.

    PubMed  CAS  Google Scholar 

  • Higgins, R. R. and Becker, A., 1994, The lambda terminase enzyme measures the point of its endonucleolytic attack 47 +/-2 bp away from its site of specific DNA binding, the R site. EMBO Journal 13: 6162–6171.

    PubMed  CAS  Google Scholar 

  • Homa, F. L. and Brown, J. C., 1997, Capsid assembly and DNA packaging in herpes simplex virus. Reviews in Medical Virology 7: 107–122.

    Article  PubMed  CAS  Google Scholar 

  • Hong, Z., Beaudet-Miller, M., Durkin, J., Zhang, R., and Kwong, A. D., 1996, Identification of a minimal hydrophobic domain in the herpes simplex virus type 1 scaffolding protein which is required for interaction with the major capsid protein. J. Virol. 70: 533–540.

    PubMed  CAS  Google Scholar 

  • Jacob, R. J., Morse, L. S., and Roizman, B., 1979, Anatomy of herpes simplex virus DNA. XII. Accumulation of head-to-tail concatemers in nuclei of infected cells and their role in the generation of the four isomeric arrangements of viral DNA. J. Virol. 29: 448–457.

    PubMed  CAS  Google Scholar 

  • Jardine. P. J. and Coombs, D. H., 1998, Capsid expansion follows the initiation of DNA packaging in bacteriophage T4. J Mol. Biol. 284: 661–672.

    PubMed  CAS  Google Scholar 

  • Kemble, G. W. and Mocarski, E. S., 1989, A host cell protein binds to a highly conserved sequence element (pac-2) within the cytomegalovirus a sequence. J. Virol. 63: 4715–4728.

    PubMed  CAS  Google Scholar 

  • Khan, S. A., Hayes. S. J., Watson, R. H., and Serwer, P., 1995, Specific, nonproductive cleavage of packaged bacteriophage T7 DNA in vivo. Virology 210: 409–420.

    Article  PubMed  CAS  Google Scholar 

  • Koslowski. K. M., Shaver. P. R.. Casey II, J. T., Wilson, T., Yamanaka, G., Sheaffer, A. K., Tenney, D. J., and Pederson, N. E., 1999, Physical and functional interactions between the herpes simplex virus UL15 and UL28 DNA cleavage and packaging proteins. J. Virol. 73: 1704–1707.

    PubMed  CAS  Google Scholar 

  • Koslowski, K. M., Shaver, P. R., Wang, X. Y., Tenney, D. J., and Pederson, N. E., 1997, The pseudorabies virus UL28 protein enters the nucleus after coexpression with the herpes simplex virus UL15 protein. J. Virol. 71: 9118–9123.

    PubMed  CAS  Google Scholar 

  • Kronsky, P. M., Underwood, M. R., Turk, S. R., Feng, K. W., Jain, R. K., Ptak, R. G., Westerman, A. C., Biron, K. K., Townsend, L. B., and Drach, J. C., 1998, Resistance of human cytomegalovirus to benzimidazole ribonucleosides maps to two open reading frames: UL89 and UL56. J. Virol. 72: 4721–4728.

    Google Scholar 

  • Lamberti, C. and Weller, S. K., 1996, The herpes simplex virus type 1 UL6 protein is essential for cleavage and packaging but not for genomic inversion. Virology 226: 403–407.

    Article  PubMed  CAS  Google Scholar 

  • Lamberti, C. and Weller, S. K., 1998, The herpes simples virus type 1 cleavage/packaging protein, UL32, is involved in efficient localization of capsids to replication compartments. J. Virol. 72: 2463–2473.

    PubMed  CAS  Google Scholar 

  • Langman, L., Paetkau, V., Scraba, D., Miller, R. C., Jr., Roeder, G. S., and Sadowski, P. D., 1978, The structure and maturation of intermediates in bacteriophage T7 DNA replication. Can. J. Biochem 56: 508–516.

    PubMed  CAS  Google Scholar 

  • Leffers, G. and Rao, V. B., 2000, Biochemical characterization of an ATPase activity associated with the large packaging subunit gp 17 from bacteriophage T4. J. Biol. Chem. 275: 37127–37136.

    Article  PubMed  CAS  Google Scholar 

  • Lepault, J., Dubochet, J., Baschong, W., and Kellenberger, E., 1987, Organization of doublestranded DNA in bacteriophages: a study by cryo-electron microscopy of vitrified samples. EMBO Journal 6: 1507–1512.

    PubMed  CAS  Google Scholar 

  • Locker, H. and Frenkel, N., 1979, BamI, KpnI, and SalI restriction enzyme maps of the DNAs of herpes simplex virus strains Justin and F: occurrence of heterogeneities in defined regions of the viral DNA. J. Virol. 32: 429–441.

    PubMed  CAS  Google Scholar 

  • Marks, J. R. and Spector, D. H., 1988, Replication of the murine cytomegalovirus genome: structure and role of the termini in the generation and cleavage of concatenates. Virology 162: 98–107.

    Article  PubMed  CAS  Google Scholar 

  • Martinez, R., Sarisky, R. T., Weber, P. C., and Weller, S. K., 1996, Herpes simplex virus type 1 alkaline nuclease is required for efficient processing of viral DNA replication intermediates. J. Virol. 70: 2075–2085.

    PubMed  CAS  Google Scholar 

  • McNab, A. R., Desai, P., Person, S., Roof, L. L., Thomsen, D. R., Newcomb, W. W., Brown, J. C., and Homa, F. L., 1998, The product of the herpes simplex virus type 1 UL25 gene is required for encapsidation but not for cleavage of replicated viral DNA. J. Virol. 72: 1060–1070.

    PubMed  CAS  Google Scholar 

  • McVoy, M.A. and Adler, S. P., 1994, Human cytomegalovirus DNA replicates after early circularization by concatemer formation, and inversion occurs within the concatemer. J. Virol. 68: 1040–1051.

    PubMed  CAS  Google Scholar 

  • McVoy, M. A., Nixon, D. E., and Adler, S. P., 1997, Circularization and cleavage of guinea pig cytomegalovirus genomes. J. Virol. 71: 4209–4217.

    PubMed  CAS  Google Scholar 

  • McVoy, M. A., Nixon, D. E., Adler, S. P., and Mocarski, E. S., 1998, Sequences within the herpesvirus-conserved pac1 and pac2 motifs are required for cleavage and packaging of the murine cytomegalovirus genome. J. Virol. 72: 48–56.

    PubMed  CAS  Google Scholar 

  • McVoy, M. A., Nixon, D. E., Jur, J. K., and Adler, S. P., 2000, The ends on herpesvirus DNA replicative concatemers contain pac2 cis cleavage/packaging elements and their formation is controlled by terminal cis sequences. J. Virol. 74: 1587–1592.

    PubMed  CAS  Google Scholar 

  • Mercer, J. A., Marks, J. R., and Spector, D. H., 1983, Molecular cloning and restriction endonuclease map** of the murine cytomegalovirus genome (Smith Strain). Virology 129: 94–106.

    Article  PubMed  CAS  Google Scholar 

  • Mettenleiter, T. C., Saalmuller, A., and Weiland, F., 1993, Pseudorabies virus protein homologous to herpes simplex virus type 1 ICP18.5 is necessary for capsid maturation. J. Virol. 67: 1236–1245.

    PubMed  CAS  Google Scholar 

  • Mocarski. E. S., Deiss, L. P., and Frenkel, N., 1985, Nucleotide sequence and structural features of a novel US-a junction present in a defective herpes simplex virus genome. J. Virol. 55: 140–146.

    PubMed  CAS  Google Scholar 

  • Mocarski, E. S., Liu, A. C., and Spaete, R. R., 1987, Structure and variability of the a sequence in the genome of human cytomegalovirus (Towne strain). J. Gen. Virol. 68 (Pt 8): 2223–2230.

    PubMed  CAS  Google Scholar 

  • Mocarski, E. S., Post, L. E., and Roizman, B., 1980, Molecular engineering of the herpes simplex virus genome: insertion of a second L-S junction into the genome causes additional genome inversions. Cell 22: 243–255.

    Article  PubMed  CAS  Google Scholar 

  • Mocarski, E. S. and Roizman, B., 1981, Site-specific inversion sequence of the herpes simplex virus genome: domain and structural features. Proc. Natl. Acad. Sci. U.S.A 78: 7047–7051.

    PubMed  CAS  Google Scholar 

  • Mocarski, E. S. and Roizman, B., 1982, Structure and role of the herpes simplex virus DNA termini in inversion, circularization and generation of virion DNA. Cell 31: 89–97.

    Article  PubMed  CAS  Google Scholar 

  • Mosig, G., 1998, Recombination and recombination-dependent DNA replication in bacteriophage T4. Annu. Rev. Genetics 32: 379–413.

    CAS  Google Scholar 

  • Murialdo, H., 1991, Bacteriophage lambda DNA maturation and packaging. Annu. Rev. Biochem. 60: 125–153.

    Article  PubMed  CAS  Google Scholar 

  • Murialdo, H. and Becker, A., 1978, Head morphogenesis of complex double-stranded deoxyribonucleic acid bacteriophages. Microbiological Reviews 42: 529–576.

    PubMed  CAS  Google Scholar 

  • Nasseri, M. and Mocarski, E. S., 1988, The cleavage recognition signal is contained within sequences surrounding an a-a junction in herpes simplex virus DNA. Virology 167: 25–30.

    Article  PubMed  CAS  Google Scholar 

  • Nealon, K., Newcomb, W. W., Pray, T. R., Craik, C. S., Brown, J. C., and Kedes, D. H., 2001, Lytic replication of Kaposi’s sarcoma-associated herpesvirus results in the formation of multiple capsid species: isolation and molecular characterization of A, B, and C capsids from a gammaherpesvirus. J. Virol. 75: 2866–2878.

    Article  PubMed  CAS  Google Scholar 

  • Newcomb, W. W., Homa, F. L., Thomsen, D. R., Booy, F. P., Trus, B. L., Steven, A. C., Spencer, J. V., and Brown, J. C., 1996, Assembly of the herpes simplex virus capsid: characterization of intermediates observed during cell-free capsid assembly. J. Mol. Biol. 263: 432–446.

    Article  PubMed  CAS  Google Scholar 

  • Newcomb, W. W., Homa, F. L., Thomsen, D. R., Trus, B. L., Cheng, N., Steven, A. C., Booy, F. P., and Brown, J. C., 1999, Assembly of the herpes simplex virus procapsid from purified components and identification of small complexes containing the major capsid and scaffolding proteins. J. Virol 73: 4239–4250.

    PubMed  CAS  Google Scholar 

  • Newcomb, W. W., Homa, F. L., Thomsen, D. R., Ye, Z., and Brown, J. C., 1994, Cell-free assembly of the herpes simplex virus capsid. J. Virol 68: 6059–6063.

    PubMed  CAS  Google Scholar 

  • Newcomb, W. W., Juhas, R. M., Thomsen, D. R., Homa, F. L., Burch, A. D., Weller, S. K., and Brown, J. C., 2001, The UL6 gene product forms the portal for entry of DNA into the herpes simplex virus capsid. J Virol. In press.

    Google Scholar 

  • Newcomb, W. W., Trus, B. L., Booy, F. P., Steven, A. C., Wall, J. S., and Brown, J. C., 1993, Structure of the herpes simplex virus capsid: molecular composition of the pentons and the triplexes. J. Mol. Biol 232: 499–511.

    Article  PubMed  CAS  Google Scholar 

  • Newcomb, W. W., Trus. B. L., Cheng, N., Steven, A. C., Sheaffer, A. K., Tenney, D. J., Weller, S. K., and Brown, J. C., 2000, Isolation of herpes simplex virus procapsids from cells infected with a protease-deficient mutant virus. J. Virol. 74: 1663–1673.

    Article  PubMed  CAS  Google Scholar 

  • Ogasawara, M., Suzutani, T., Yoshida, I., and Azuma, M., 2001, Role of the UL25 Gene Product in Packaging DNA into the Herpes Simplex Virus Capsid: Location of UL25 Product in the Capsid and Demonstration that It Binds DNA. J. Virol. 75: 1427–1436.

    Article  PubMed  CAS  Google Scholar 

  • Oien, N. L., Thomsen, D. R., Wathen, M. W., Newcomb, W. W., Brown, J. C., and Homa, F. L., 1997, Assembly of herpes simplex virus capsids using the human cytomegalovirus scaffold protein: critical role of the C-terminus. J. Virol. 71: 1281–1291.

    PubMed  CAS  Google Scholar 

  • Patel, A. H. and MacLean, J. B., 1995, The product of the UL6 gene of herpes simplex virus type 1 is associated with virus capsids. Virology 206: 465–478.

    PubMed  CAS  Google Scholar 

  • Patel, A. H., Rixon, F. J., Cunningham, C., and Davison, A. J., 1996, Isolation and characterization of a herpes simplex virus type-1 mutant defective in the UL6 gene. Virology 217: 111–123.

    Article  PubMed  CAS  Google Scholar 

  • Pederson, N. E. and Enquist, L. W., 1991, Overexpression in bacteria and identification in infected cells of the pseudorabies virus protein homologous to herpes simplex virus type 1 ICP18.5. J. Virol. 65: 3746–3758.

    PubMed  CAS  Google Scholar 

  • Poffenberger, K. L. and Roizman, B., 1985, A noninverting genome of a viable herpes simplex virus 1: presence of head-to-tail linkages in packaged genomes and requirements for circularization after infection. J. Virol. 53: 587–595.

    PubMed  CAS  Google Scholar 

  • Poon, A. P. W. and Roizman, B., 1993, Characterization of a temperature-sensitive mutant of the UL15 open reading frame of herpes simplex virus 1. J. Virol. 67: 4497–4503.

    PubMed  CAS  Google Scholar 

  • Preston, V. G., Coates, J. A. V., and Rixon, F. J., 1983, Identification and characterization of a herpes simplex virus gene product required for encapsidation of virus DNA. J. Virol. 45: 1056–1064.

    PubMed  CAS  Google Scholar 

  • Prevelige, P. E. and King, J., 1993, Assembly of bacteriophage P22: A model for ds-DNA virus assembly. Progress in Medical Virology 40: 206–221.

    Google Scholar 

  • Reynolds, A. E., Fan, Y., and Baines, J. D., 2000, Characterization of the U(L)33 gene product of herpes simplex virus 1. Virology 266: 310–318.

    Article  PubMed  CAS  Google Scholar 

  • Rixon, F. J., 1993, Structure and assembly of herpesviruses. Seminars in Virology 4: 135–144.

    Article  CAS  Google Scholar 

  • Rixon, F. J. and McNab, D., 1999, Packaging-competent capsids of a herpes simplex virus temperature-sensitive mutant have properties similar to those of in vitro-assembled procapsids. J. Virol. 73: 5714–5721.

    PubMed  CAS  Google Scholar 

  • Roizman, B. and Sears, A. E., 1996, Herpes simplex viruses and their replication. In “Fields Virology” (B. N. Fields, D. M. Knipe, P. M. Howley, R. M. Chanock, J. L. Melnick, T. P. Monath, B. Roizman, and S. E. Straus, Eds.), Vol. 2, pp. 2231–2295. Lippincott-Raven, Philadelphia.

    Google Scholar 

  • Salmon, B. and Baines, J. D., 1998, Herpes simplex virus DNA cleavage and packaging: association of multiple forms of UL15-encoded proteins with B capsids requires at least the UL6, UL17 and UL28 genes. J. Virol. 72: 3045–3050.

    PubMed  CAS  Google Scholar 

  • Salmon, B., Cunningham, C., Davison, A. J., Harris, W. J., and Baines, J. D., 1998, The herpes simplex virus type 1 UL17 gene encodes virion tegument proteins that are required for cleavage and packaging of viral DNA. J. Virol. 72: 3779–3788.

    PubMed  CAS  Google Scholar 

  • Salmon, B., Nalwanga, D., Fan, Y., and Baines, J. D., 1999, Proteolytic cleavage of the amino terminus of the UL15 gene product of herpes simplex virus type 1 is coupled with maturation of viral DNA into unit-length genomes. J. Virol. 73: 8338–8348.

    PubMed  CAS  Google Scholar 

  • Serwer, P., Watson, R. H., and Hayes, S. J., 1992, Formation of the right before the left mature DNA end during packaging-cleavage of bacteriophage T7 DNA concatemers. J. Mol. Biol. 226: 311–317.

    Article  PubMed  CAS  Google Scholar 

  • Severini, A., Morgan, A. R., Tovell, D. R., and Tyrrell, D. L., 1994, Study of the structure of replicative intermediates of HSV-1 DNA by pulsed-field gel electrophoresis. Virology 200: 428–435.

    Article  PubMed  CAS  Google Scholar 

  • Sheaffer, A. K., Newcomb, W. W., Gao, M., Yu, D., Weller, S. K., Brown, J. C., and Tenney, D. J., 2001, Herpes simplex virus DNA cleavage and packaging proteins associate with the procapsid prior to its maturation. J. Virol. 75: 687–698.

    Article  PubMed  CAS  Google Scholar 

  • Sherman, G. and Bachenheimer, S., 1987, DNA processing in temperature-sensitive morphogenic mutants of HSV-1. Virology 158: 427–430.

    Article  PubMed  CAS  Google Scholar 

  • Sherman, G. and Bachenheimer, S. L., 1988, Characterization of intranuclear capsids made by ts morphogenetic mutants of HSV-1. Virology 163: 471–480.

    Article  PubMed  CAS  Google Scholar 

  • Shibata, H., Fujisawa, H., and Minagawa, T., 1987, Characterization of the bacteriophage T3 DNA packaging reaction in vitro in a defined system. J. Mol. Biol. 196: 845–851.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, A. A., Tao, Y., Leiman, P. G., Badasso, M. O., He, Y., Jardine, P. J., Olson, N. H., Morais, M. C., Grimes, S., Anderson, D. L., Baker, T. S., and Rossmann, M. G., 2000, Structure of the bacteriophage phi29 DNA packaging motor. Nature 408: 745–750.

    PubMed  CAS  Google Scholar 

  • Slobedman, B. and Simmons, A., 1997, Concatemeric intermediates of equine herpesvirus type 1 DNA replication contain frequent inversions of adjacent long segments of the viral genome. Virology 229: 415–420.

    Article  PubMed  CAS  Google Scholar 

  • Slobedman, B., Zhang, X., and Simmons, A., 1999, Herpes simplex virus genome isomerization: origins of adjacent long segments in concatemeric viral DNA. J. Virol. 73: 810–813.

    PubMed  CAS  Google Scholar 

  • Smiley, J. R., Duncan, J., and Howes, M., 1990, Sequence requirements for DNA rearrangements induced by the terminal repeat of herpes simplex virus type 1 KOS DNA. J. Virol. 64: 5036–5050.

    PubMed  CAS  Google Scholar 

  • Son, M., Watson, R. H., and Serwer, P., 1993, The direction and rate of bacteriophage T7 DNA packaging in vitro. Virology 196: 282–289.

    Article  PubMed  CAS  Google Scholar 

  • Spaete, R. R. and Frenkel, N., 1982, The herpes simplex virus amplicon: a new eucaryotic defective-virus cloning-amplifying vector. Cell 30: 295–304.

    Article  PubMed  CAS  Google Scholar 

  • Spaete, R. R. and Frenkel, N., 1985, The herpes simplex virus amplicon: analyses of cisacting replication functions. Proc. Natl. Acad. Sci. U.S.A 82: 694–698.

    PubMed  CAS  Google Scholar 

  • Spencer, J. V., Newcomb, W. W., Thomsen, D. R., Homa, F. L., and Brown, J. C., 1998, Assembly of the herpes simplex virus capsid: pre-formed triplexes bind to the nascent capsid. J. Virol. 72: 3944–3951.

    PubMed  CAS  Google Scholar 

  • Steven, A. C. and Spear, P. G., 1996, Herpesvirus capsid assembly and envelopment. In “Structural Biology of Viruses” (R. Burnett, W. Chiu, and R. Garcea, Eds.), pp. 312–351. Oxford University Press, New York.

    Google Scholar 

  • Stow, N. D., McMonagle, E. C., and Davison, A. J., 1983, Fragments from both termini of the herpes simplex virus type 1 genome contain signals required for the encapsidation of viral DNA. Nucleic Acids Res. 11: 8205–8220.

    PubMed  CAS  Google Scholar 

  • Tamashiro, J. C., Filpula, D., Friedmann, T., and Spector, D. H., 1984, Structure of the heterogeneous L-S junction region of human cytomegalovirus strain AD169 DNA. J. Virol. 52: 541–548.

    PubMed  CAS  Google Scholar 

  • Tamashiro, J. C. and Spector, D. H., 1986. Terminal structure and heterogeneity in human cytomegalovirus strain AD169. J. Virol. 59: 591–604.

    PubMed  CAS  Google Scholar 

  • Tatman, J. D., Preston, V. G., Nicholson, P., Elliott, R. M., and Rixon, F. J., 1994, Assembly of herpes simplex virus type 1 capsids using a panel of recombinant baculoviruses. J. Gen. l Virol. 75: 1101–1113.

    CAS  Google Scholar 

  • Taus, N. S. and Baines, J. D., 1998, Herpes simplex virus 1 DNA cleavage/packaging: the UL28 gene encodes a minor component of B capsids. Virology 252: 443–449.

    PubMed  CAS  Google Scholar 

  • Taus, N. S., Salmon, B., and Baines, J. D., 1998, The herpes simplex virus 1 UL17 gene is required for localization of capsids and major and minor capsid proteins to intranuclear sites where viral DNA is cleaved and packaged. Virology 252: 115–125.

    PubMed  CAS  Google Scholar 

  • Tengelsen, L. A., Pederson, N. E., Shaver, P. R., Wathen, M. W., and Homa, F. L., 1993, Herpes simplex virus type 1 DNA cleavage and encapsidation require the product of the UL28 gene: isolation and characterization of two UL28 deletion mutants. J. Virol 67: 3470–3480.

    PubMed  CAS  Google Scholar 

  • Thomsen, D. R., Roof, L. L., and Homa, F. L., 1994, Assembly of herpes simplex virus (HSV) intermediate capsids in insect cells infected with recombinant baculoviruses expressing HSV capsid proteins. J. Virol. 68: 2442–2457.

    PubMed  CAS  Google Scholar 

  • Trus, B. L., Booy, F. P., Newcomb, W. W., Brown, J. C., Homa, F. L., Thomsen, D. R., and Steven, A. C., 1996. The herpes simplex virus procapsid: structure, comformational changes upon maturation, and roles of the triplex proteins VP19C and VP23 in assembly. J. Mol. Biol 263: 447–462.

    Article  PubMed  CAS  Google Scholar 

  • Trus, B. L., Gibson, W., Cheng, N., and Steven, A. C., 1999, Capsid structure of simian cytomegalovirus from cryoelectron microscopy: evidence for tegument attachment sites. J. Virol. 73: 2181–2192.

    PubMed  CAS  Google Scholar 

  • Trus, B. L., Homa, F. L., Booy, F. P., Newcomb, W. W., Thomsen, D. R., Cheng, N., Brown, J. C., and Steven. A. C., 1995, Herpes simplex virus capsids assembled in insect cells infected with recombinant baculoviruses: Structural authenticity and localization of VP26. J. Virol. 69 7362–7366.

    PubMed  CAS  Google Scholar 

  • Umene, K., 1991, Recombination of the internal direct repeat element DR2 responsible for the fluidity of the a sequence of herpes simplex virus type 1. J. Virol. 65: 5410–5416.

    PubMed  CAS  Google Scholar 

  • Umene, K., 1994, Excision of DNA fragments corresponding to the unit-length a sequence of herpes simplex virus type 1 and terminus variation predominate on one side of the excised fragment. J Virol 68: 4377–4383.

    PubMed  CAS  Google Scholar 

  • Underwood, M. R., Harvey, R. J., Stanat, S. C., Hemphill, M. L., Miller, T., Drach, J. C., Townsend, L. B., and Biron, K. K., 1998, Inhibition of human cytomegalovirus DNA maturation by a benzimidazole ribonucleoside is mediated through the UL89 gene product. J. Virol. 72: 717–725.

    PubMed  CAS  Google Scholar 

  • Valpuesta, J. M. and Carrascosa, J. L., 1994, Structure of viral connectors and their function in bacteriophage assembly and DNA packaging. Q. Rev. Biophys. 27: 107–155.

    PubMed  CAS  Google Scholar 

  • van Zeijl, M., Fairhurst, J., Jones, T. R., Vernon, S. K., Morin, J., LaRocque, J., Feld, B., O’Hara, B., Bloom, J. D., and Johann, S. V., 2000, Novel class of thiourea compounds that inhibit herpes simplex virus type 1 DNA cleavage and encapsidation: resistance maps to the UL6 gene [In Process Citation]. J. Virol. 74: 9054–9061.

    PubMed  Google Scholar 

  • Varmuza, S. L. and Smiley, J. R., 1985, Signals for site-specific cleavage of HSV DNA: maturation involves two separate cleavage events at sites distal to the recognition sequences. Cell 41: 793–802.

    Article  PubMed  CAS  Google Scholar 

  • Vlazny, D. A. and Frenkel, N., 1981, Replication of herpes simplex virus DNA: localization of replication recognition signals within defective virus genomes. Proc. Natl. Acad. Sci. U.S.A 78: 742–746.

    PubMed  CAS  Google Scholar 

  • Vlazny, D. A., Kwong, A., and Frenkel, N., 1982, Site-specific cleavage/packaging of herpes simplex virus DNA and the selective maturation of nucleocapsids containing full-length viral DNA. Proc. Natl. Acad. Sci. U.S.A 79: 1423–1427.

    PubMed  CAS  Google Scholar 

  • Wagner, M. J. and Summers, W. C., 1978, Structure of the joint region and the termini of the DNA of herpes simplex virus type I. J. Virol. 27: 374–387.

    PubMed  CAS  Google Scholar 

  • Ward, P. L., Ogle, W. O., and Roizman, B., 1996, Assemblons: Nuclear structures defined by aggregation of immature capsids and some tegument proteins on herpes simplex virus 1. J. Virol. 70: 4623–4631.

    PubMed  CAS  Google Scholar 

  • Warner, S. C., Desai, P., and Person, S., 2000, Second-site mutations encoding residues 34 and 78 of the major capsid protein (VP5) of herpes simplex virus type 1 are important for overcoming a blocked maturation cleavage site of the capsid scaffold proteins. Virology 278: 217–226.

    Article  PubMed  CAS  Google Scholar 

  • Weller, S. K., 1995, Herpes simplex virus DNA replication and genome maturation. In “The DNA Provirus: Howard Temin’s Scientific Legacy” (G. M. Cooper, R. G. Temin, and B. Sugden, Eds.), pp. 189–213. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • White, J. H. and Richardson, C. C., 1987, Processing of concatemers of bacteriophage T7 DNA in vitro. J. Biol. Chem. 262: 8851–8860.

    PubMed  CAS  Google Scholar 

  • Yao, X. D. and Elias, P., 2001, Recombination during early herpes simplex virus type 1 infection is mediated by cellular proteins. J. Biol. Chem. 276: 2905–2913.

    PubMed  CAS  Google Scholar 

  • Yao, X. D., Matecic, M., and Elias, P., 1997, Direct repeats of the herpes simplex virus a sequence promote nonconservative homologous recombination that is not dependent on XPF/ERCC4. J. Virol. 71: 6842–6849.

    PubMed  CAS  Google Scholar 

  • Yu, D., Sheaffer, A. K., Tenney, D. J., and Weller. S. K., 1997, Characterization of ICP6: lacZ insertion mutants of the UL15 gene of herpes simplex virus type 1 reveals the translation of two proteins. J. Virol. 71: 2656–2665.

    PubMed  CAS  Google Scholar 

  • Yu, D. and Weller, S. K., 1998b, Genetic analysis of the UL15 gene locus for the putative terminase of herpes simplex virus type 1. Virology 243: 32–44.

    PubMed  CAS  Google Scholar 

  • Yu, D. and Weller, S. K. 1998a, Herpes simplex virus type 1 cleavage and packaging proteins UL15 and UL28 are associated with B but not C capsids during packaging. J. Virol. 72: 7428–7439.

    PubMed  CAS  Google Scholar 

  • Zacny, V. L., Gershburg, E., Davis, M. G., Biron, K. K., and Pagano, J. S., 1999. Inhibition of Epstein-Barr virus replication by a benzimidazole L-riboside: novel antiviral mechanism of 5, 6-dichloro-2-(isopropylamino)-1-beta-L-ribofuranosyl-IH-benzimidazole. J. Virol. 73: 7271–7277.

    PubMed  CAS  Google Scholar 

  • Zhang, X., Efstathiou, S., and Simmons, A., 1994, Identification of novel herpes simplex virus replicative intermediates by field inversion gel electrophoresis: implications for viral DNA amplification strategies. Virology 202: 530–539.

    PubMed  CAS  Google Scholar 

  • Zhou, Z. H., Dougherty, M., Jakana, J., He, J., Rixon, F. J., and Chiu, W., 2000, Seeing the herpesvirus capsid at 8.5 A. Science 288: 877–880.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Z. H., He, J., Jakana, J., Tatman, J. D., Rixon, F. J., and Chiu, W., 1995, Assembly of VP26 in herpes simplex virus-1 inferred from structures of wild-type and recombinant capsids. Nature Struct. Biol. 2: 1026–1030.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, J. and Hammerschmidt, W., 1995, Structure and role of the terminal repeats of Epstein-Barr virus in processing and packaging of virion DNA. J. Virol. 69: 3147–3155.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Brown, J.C., McVoy, M.A., Homa, F.L. (2002). Packaging DNA into Herpesvirus Capsids. In: Holzenburg, A., Bogner, E. (eds) Structure-Function Relationships of Human Pathogenic Viruses. Springer, Boston, MA. https://doi.org/10.1007/0-306-47650-9_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-47650-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46768-4

  • Online ISBN: 978-0-306-47650-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation