Log in

Direct Evidence of Simultaneous Reversal of Ferrimagnetically Coupled Sm 4f and Mn 3d Angular Momenta in SmMnO3

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Using the soft X-ray magnetic circular dichroism (XMCD) technique, we investigated the magnetic states of the Sm 4f and the Mn 3d moments in a Néel N-type ferrimagnet, SmMnO3, which exhibits a striking magnetocapacitive effect around the compensation temperature (Tcomp ≈ 9.4 K). The XMCD results show that the Sm 4f and the Mn 3d moments were always aligned antiparallel to each other and that, upon swee** a magnetic field, the angular momenta of Sm 4f and Mn 3d were simultaneously reversed at the field where the magnetocapacitive effect was observed. This indicates that the magnetocapacitive effect of SmMnO3 is induced by a simultaneous reversal of Sm 4f and Mn 3d angular momenta, i.e., magnetization reversal. We discuss a plausible origin of the magnetocapacitive effect in terms of the p-d hybridization mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kimura et al., Nature426, 55 (2003).

    Article  ADS  Google Scholar 

  2. M. Kenzelmann et al., Phys. Rev. Lett.95, 087206 (2005).

    Article  ADS  Google Scholar 

  3. V. Y. Pomjakushin et al., New J. Phys.11, 043019 (2009).

    Article  ADS  Google Scholar 

  4. S-W. Cheong and M. Mostovoy, Nat. Mater.6, 13 (2007).

    Article  ADS  Google Scholar 

  5. D. Khomskii, Physics2, 20 (2009).

    Article  Google Scholar 

  6. S. Dong and J-M. Liu, Mod. Phys. Lett. B26, 1230004 (2012).

    Article  ADS  Google Scholar 

  7. E. Bousquet and A. Cano, J. Phys.: Condens. Matter28, 123001 (2016).

    Google Scholar 

  8. D. Okuyama et al., Phys. Rev. B84, 054440 (2011).

    Article  ADS  Google Scholar 

  9. H. Katsura, N. Nagaosa and A. V. Balatsky, Phys. Rev. Lett.95, 057205 (2005).

    Article  ADS  Google Scholar 

  10. I. A. Sergienko and E. Dagotto, Phys. Rev. B73, 094434 (2006).

    Article  ADS  Google Scholar 

  11. M. Mostovoy, Phys. Rev. Lett.96, 067601 (2006).

    Article  ADS  Google Scholar 

  12. I. A. Sergienko, C. Sen and E. Dagotto, Phys. Rev. Lett.97, 227204 (2006).

    Article  ADS  Google Scholar 

  13. S. Picozzi et al., Phys. Rev. Lett.99, 227201 (2007).

    Article  ADS  Google Scholar 

  14. T. Kimura et al., Phys. Rev. B68, 060403(R) (2003).

  15. V. Skumryev et al., Eur. Phys. J. B11, 401 (1999).

    ADS  Google Scholar 

  16. J-S. Jung et al., Phys. Rev. B82, 212403 (2010).

    Article  ADS  Google Scholar 

  17. V. Y. Ivanov, A. A. Mukhin, A. S. Prokhorov and A. M. Balbashov, Phys. Status Solidi B236, 445 (2003).

    Article  ADS  Google Scholar 

  18. L. Néel, Ann. Phys. (Paris)3, 137 (1948).

    ADS  Google Scholar 

  19. N. Menyuk, K. Dwight and D. G. Wickhan, Phys. Rev. Lett.4, 119 (1960).

    Article  ADS  Google Scholar 

  20. B. T. Thole, G. van der Laan and J. C. Fuggle, Phys. Rev. B32, 5107 (1985).

    Article  ADS  Google Scholar 

  21. S. S. Dhesi et al., Phys. Rev. B82, 180402(R) (2010).

    Article  ADS  Google Scholar 

  22. T. Koide et al., Phys. Rev. Lett.87, 246404 (2001).

    Article  ADS  Google Scholar 

  23. B. T. Thole, P. Carra, F. Sette and G. van der Laan, Phys. Rev. Lett.68, 1943 (1992).

    Article  ADS  Google Scholar 

  24. M. Altarelli, Phys. Rev. B47, 597 (1993).

    Article  ADS  Google Scholar 

  25. P. Carra, B. T. Thole, M. Altarelli and X. Wang, Phys. Rev. Lett.70, 694 (1993).

    Article  ADS  Google Scholar 

  26. P. Carra et al., Physica B192, 182 (1993).

    Article  ADS  Google Scholar 

  27. Y. Teramura, A. Tanaka and T. Jo, J. Phys. Soc. Jpn.65, 1053 (1996).

    Article  ADS  Google Scholar 

  28. S. Qiao et al., Phys. Rev. B70, 134418 (2004).

    Article  ADS  Google Scholar 

  29. T. Jo, Electron Spectrosc. Relat. Phenom.86, 73 (1997).

    Article  Google Scholar 

  30. J-G. Cheng et al., Phys. Rev. B84, 104415 (2011).

    Article  ADS  Google Scholar 

  31. A. Iyama et al., J. Phys. Soc. Jpn.81, 013703 (2012).

    Article  ADS  Google Scholar 

  32. J-S. Jung et al., Phys. Rev. B85, 174414 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Y. Shiratsuchi for supporting the experiments. The XMCD measurements at BL25SU (Proposal No. 2011A1129) in SPring-8 were performed with the approval of Japan Synchrotron Radiation Research Institute (JASRI). This work was partly supported by Grants-in-Aid for Scientific Research (JSPS KAKENHI Grant numbers JP17H01143 and JP19H05823).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kimura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, JS., Nakamura, T., Wakabayashi, Y. et al. Direct Evidence of Simultaneous Reversal of Ferrimagnetically Coupled Sm 4f and Mn 3d Angular Momenta in SmMnO3. J. Korean Phys. Soc. 76, 904–910 (2020). https://doi.org/10.3938/jkps.76.904

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.904

PACS numbers

Keywords

Navigation