Log in

AdS Space from Entanglement Entropy

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We show that the anti-de Sitter(AdS) space naturally emerges from the conformal field theory (CFT). The behavior of the leading divergent term in the entanglement entropy implies the underlying AdS geometry. The coefficient of the leading divergent term is related to the radius of the AdS space. All these are confirmed fully for two-dimensional CFTs. We also give comments for higher dimensional CFTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.’ t Hooft, Salamfest 1993:0284–296 [gr-qc/9310026].

  2. L. Susskind, J. Math. Phys. 36, 6377 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  3. J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999)

    Article  Google Scholar 

  4. J. M. Maldacena, [Adv. Theor. Math. Phys. 2, 231 (1998)].

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Ryu and T. Takayanagi, Phys. Rev. Lett. 96, 181602 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Ryu and T. Takayanagi, J. High Energy Phys. 0608, 045 (2006)

    Article  ADS  Google Scholar 

  7. H. Casini, M. Huerta and R. C. Myers, J. High Energy Phys. 1105, 036 (2011).

    Article  ADS  Google Scholar 

  8. A. Lewkowycz and J. Maldacena, J. High Energy Phys. 1308, 090 (2013).

    Article  ADS  Google Scholar 

  9. M. Van Raamsdonk, ar**v:0907.2939 [hep-th]

  10. M. Van Raamsdonk, Gen. Rel. Grav. 42, 2323 (2010)

    Article  ADS  Google Scholar 

  11. M. Van Raamsdonk, [Int. J. Mod. Phys. D 19, 2429 (2010)].

    Article  ADS  Google Scholar 

  12. B. Swingle, Phys. Rev. D 86, 065007 (2012).

    Article  ADS  Google Scholar 

  13. M. Nozaki, S. Ryu and T. Takayanagi, J. High Energy Phys. 1210, 193 (2012).

    Article  ADS  Google Scholar 

  14. G. Vidal, Phys. Rev. Lett. 99, 220405 (2007).

    Article  ADS  Google Scholar 

  15. J. Haegeman, T. J. Osborne, H. Verschelde and F. Verstraete, Phys. Rev. Lett. 110, 100402 (2013).

    Article  ADS  Google Scholar 

  16. C. Beny, New J. Phys. 15, 023020 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Miyaji and T. Takayanagi, PTEP 2015, 073B03 (2015).

    Google Scholar 

  18. F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, J. High Energy Phys. 1506, 149 (2015).

    Article  ADS  Google Scholar 

  19. B. Czech, L. Lamprou, S. McCandlish and J. Sully, J. High Energy Phys. 1510, 175 (2015).

    Article  ADS  Google Scholar 

  20. M. Miyaji et al., Phys. Rev. Lett. 115, 171602 (2015).

    Article  ADS  Google Scholar 

  21. P. Hayden et al., J. High Energy Phys. 1611, 009 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  22. P. Caputa et al., Phys. Rev. Lett. 119, 071602 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  23. S. S. Lee, Nucl. Phys. B 832, 567 (2010).

    Article  ADS  Google Scholar 

  24. S. S. Lee, Nucl. Phys. B 851, 143 (2011).

    Article  ADS  Google Scholar 

  25. S. S. Lee, J. High Energy Phys. 1210, 160 (2012).

    Article  ADS  Google Scholar 

  26. C. Holzhey, F. Larsen and F. Wilczek, Nucl. Phys. B 424, 443 (1994).

    Article  ADS  Google Scholar 

  27. P. Calabrese and J. L. Cardy, J. Stat. Mech. 0406, P06002 (2004).

    Google Scholar 

  28. J. D. Brown and M. Henneaux, Commun. Math. Phys. 104, 207 (1986).

    Article  ADS  Google Scholar 

  29. L. Bombelli, R. K. Koul, J. Lee and R. D. Sorkin, Phys. Rev. D 34, 373 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  30. M. Srednicki, Phys. Rev. Lett. 71, 666 (1993).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank Jae-Suk Park and Kyung Kiu Kim for useful discussion. SH would like to thank KEK and KIAS for their hospitality, where part of this work has been done. This work was supported by the National Research Foundation of Korea (NRF) grant NRF-2016R1D1A1A09917598 and by the Yonsei University Future-leading Research Initiative of 2017 (2017-22-0098).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seungjoon Hyun or Sang-A Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyun, S., Park, SA. AdS Space from Entanglement Entropy. J. Korean Phys. Soc. 75, 845–850 (2019). https://doi.org/10.3938/jkps.75.845

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.75.845

Keywords

Navigation