Log in

Modified Stack Layer for a Two-Step Process for High Efficiency CZTSe Solar Cell

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

For kesterite Cu2ZnSnSe4 (CZTSe) solar cells, the CZTSe absorber is usually fabricated using a two-step process, in which the CZTSe absorber is made by using post-selenization of a sputtered metal stack film. In the post-selenized CZTSe film, a rough surface, voids, and small-grained structures at bottom near the Mo back contact are frequently observed. To avoid these inferior features, we designed and fabricated a new modified stack layer that showed compact and larger grains with no voids and with small-grain-free near the bottom side. Several measurements, such as X-ray diffraction, Raman spectroscopy, photoluminescence, and time-resolved photoluminescence measurements, showed that the selenized film from the newly designed stack layer had high crystal quality. With the fabricated absorber, we made two types of CZTSe solar cells, one with a CdS buffer and the other with a (Zn,Sn)O buffer. The (Zn,Sn)O- buffered CZTSe solar cell showed a power conversion efficiency of 8.31%, which is comparable to the 8.84% of the CdS-buffered CZTSe solar cell. Our results indicates that the CZTSe solar cells made by using our newly designed stack layer and a (Zn,Sn)O buffer are promising for high-efficiency Cd-free CZTSe solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. B. Mitzi et al., Sol. Energy Mater. Sol. Cells 95, 1421 (2011).

    Article  Google Scholar 

  2. W. Wang et al., Adv. Energy Mater. 4, 1301465 (2014).

    Article  Google Scholar 

  3. K. Yang et al., J. Mater. Chem. A 4, 10151 (2016).

    Article  Google Scholar 

  4. S. Siebentritt and S. Schorr, Prog. Photovolt: Res. Appl. 20, 512 (2012).

    Article  Google Scholar 

  5. W. Wang et al., Energy Environ. Sci. 7, 1029 (2014).

    Article  Google Scholar 

  6. K. Ito and T. Nakazawa, Jpn. J. Appl. Phys. 27, 2094 (1988).

    Article  ADS  Google Scholar 

  7. K. Yang et al., Nat. Commun. 10, 2959 (2019).

    Article  ADS  Google Scholar 

  8. M. A. Green et al., Prog. Photovoltaics Res. Appl. 27, 565 (2019).

    Article  Google Scholar 

  9. S. Bag et al., Energy Environ. Sci. 5, 7060 (2012).

    Article  Google Scholar 

  10. W. Ki and H. W. Hillhouse, Adv. Energy Mater. 1, 732 (2011).

    Article  Google Scholar 

  11. J. J. Scragg et al., Prog. Photovoltaics Res. Appl. 22, 10 (2012).

    Article  Google Scholar 

  12. J. Li et al., Sol. Energy Mater. Sol. Cells 149, 242 (2016).

    Article  ADS  Google Scholar 

  13. K. Wang et al., Appl. Phys. Lett. 97, 143508 (2010).

    Article  ADS  Google Scholar 

  14. Y. S. Lee et al., Adv. Energy Mater. 5, 1401372 (2015).

    Article  Google Scholar 

  15. S. M. Pawar et al., Electrochim. Acta 55, 4057 (2010).

    Article  Google Scholar 

  16. L. Guo et al., Prog. Photovoltaics Res. Appl. 22, 58 (2014).

    Article  Google Scholar 

  17. N. Kamoun, H. Bouzouita and B. Rezig, Thin Solid Films 515, 5949 (2007).

    Article  ADS  Google Scholar 

  18. Y. B. Kishore Kumar, P. Uday Bhaskar, G. Suresh Babu and V. Sundara Raja, Phys. Status Solidi A 207, 149 (2010).

    Article  ADS  Google Scholar 

  19. H. Yoo and J. Kim, Thin Solid Films 518, 6567 (2010).

    Article  ADS  Google Scholar 

  20. P. A. Fernandes, P. M. P. Salom´e, A. F. da Cunha and Björn-Arvid Schubert, Thin Solid Films 519, 7382 (2010).

    Article  ADS  Google Scholar 

  21. A. Fairbrother et al., Sol. Energy Mater. Sol. Cells 112, 97 (2013).

    Article  Google Scholar 

  22. A. Fairbrother et al., J. Phys. Chem. C 118, 17291 (2014).

    Article  Google Scholar 

  23. S. W. Shin et al., Sol. Energy Mater. Sol. Cells 95, 3202 (2011).

    Article  Google Scholar 

  24. A. Weber et al., Phys. Status Solidi C 6, 1245 (2009).

    Article  ADS  Google Scholar 

  25. G. Brammertz et al., Appl. Phys. Lett. 103, 163904 (2013).

    Article  ADS  Google Scholar 

  26. F. Liu et al., Sol. Energy Mater. Sol. Cells 94, 2431 (2010).

    Article  Google Scholar 

  27. T. P. Dhakala et al., Solar Energy 100, 23 (2014).

    Article  ADS  Google Scholar 

  28. J. Lindahl et al., Prog. Photovoltaics Res. Appl. 21, 1588 (2013).

    Article  Google Scholar 

  29. J. Lindahl et al., Sol. Energy Mater. Sol. Cells 114, 684 (2016).

    Article  Google Scholar 

  30. X. Li et al., Sol. Energy Mater. Sol. Cells 157, 101 (2016).

    Article  ADS  Google Scholar 

  31. A. Hultqvist, C. Platzer-Björkman, U. Zimmermann, M. Edoff and T. Törndahl, Prog. Photovoltaics Res. Appl. 20, 883 (2012).

    Article  Google Scholar 

  32. S. Y. Kim et al., Nano Energy 59, 399 (2019).

    Article  Google Scholar 

  33. D. B. Khadka and J. Kim, J. Phys. Chem. C 119, 12226 (2015).

    Article  Google Scholar 

  34. H. Du et al., J. Appl. Phys. 115, 173502 (2014).

    Article  ADS  Google Scholar 

  35. T. R. Rana et al., Sustainable Energy Fuels 1, 1981 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) funded by the Korean Government (NRF-2016M1A2A2937010, NRF-2017R1A 2B2006223) and by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20183020010970).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JunHo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Han, G. & Kim, J. Modified Stack Layer for a Two-Step Process for High Efficiency CZTSe Solar Cell. J. Korean Phys. Soc. 75, 735–741 (2019). https://doi.org/10.3938/jkps.75.735

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.75.735

Keywords

Navigation