Log in

Effect of Contact Resistance on the High-Field Characteristics of MoS2 Transistors

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Layered transition metal dichalcogenides (TMDs) display a wide range of unique electronic properties and are potentially important for electronic device applications. Much interest in these materials led to in-depth research on the device properties of TMDs such as MoS2. Unlike graphene, this material has a relatively large band gap (1.3–1.9 eV) and exhibits stable on/off switching as a transistor. TMD materials represent ideal channel materials for device scalability as their few-atom-thick layers devoid of dangling bonds will be robust against short-channel effects for ultrathin channeled transistors. As MoS2 devices are scaled down, robust high-field operation is essential for the development of reliable electronic systems. In this work, we explore the high-field characteristics of MoS2-based transistors and investigate their relationship to the contact resistance. Importantly, we show that high-voltage characteristics, current drives, and breakdown voltages of MoS2 transistors can be significantly improved through the use of a metal-insulator-semiconductor contact at the metal/MoS2 interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Schwierz, Nat. Nanotechnol. 5, 487 (2010).

    Article  ADS  Google Scholar 

  2. K. F. Mak et al., Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  3. Y. Yoon, K. Ganapathi and S. Salahuddin, Nano Lett. 11, 3768 (2011).

    Article  ADS  Google Scholar 

  4. N. Kaushik et al., Appl. Phys. Lett. 105, 113505 (2014).

    Article  ADS  Google Scholar 

  5. P. Avouris, Z. Chen and V. Perebeinos, in Nanoscience And Technology: A Collection of Reviews from Nature Journals (World Scientific, 2010).

  6. E. Pop, Nanotechnology 19, 295202 (2008).

    Article  Google Scholar 

  7. H. Ilatikhameneh et al., IEEE Trans. Nanotechnol. 17, 293 (2018).

    Article  ADS  Google Scholar 

  8. E. Pop, S. Sinha and K. E. Goodson, Proc. IEEE 94, 1587 (2006).

    Article  Google Scholar 

  9. G-S. Kim et al., ACS Nano 12, 6292 (2018).

    Article  Google Scholar 

  10. J. Wang et al., Adv. Mater. 28, 8302 (2016).

    Article  Google Scholar 

  11. J. Zhang et al., ACS Nano 8, 6024 (2014).

    Article  Google Scholar 

  12. B. Radisavljevic et al., Nat. Nanotechnol. 6, 147 (2011).

    Article  ADS  Google Scholar 

  13. S. Das, H-Y. Chen, A. V. Penumatcha and J. Appenzeller, Nano Lett. 13, 100 (2012).

    Article  ADS  Google Scholar 

  14. G-S. Kim et al., ACS Nano 12, 6292 (2018).

    Article  Google Scholar 

  15. R. Kappera et al., Nat. Mater. 13, 1128 (2014).

    Article  ADS  Google Scholar 

  16. H. Fang et al., Nano Lett. 12, 3788 (2012).

    Article  ADS  Google Scholar 

  17. H. Fang et al., Nano Lett. 13, 1991 (2013).

    Article  ADS  Google Scholar 

  18. L. Hung, C. W. Tang and M. G. Mason, Appl. Phys. Lett. 70, 152 (1997).

    Article  ADS  Google Scholar 

  19. R. Jackson et al., Adv. Funct. Mater. 18, 2548 (2008).

    Article  Google Scholar 

  20. H. Liu, Y. Liu, D. Zhu and J. Mater. Chem. 21, 3335 (2011).

    Google Scholar 

  21. L. Lin, J. Robertson and S. Clark, Microelectron. Eng. 88, 1461 (2011).

    Article  Google Scholar 

  22. T. Nishimura, K. Kita and A. Toriumi, Appl. Phys. Express. 1, 051406 (2008).

    Article  ADS  Google Scholar 

  23. J. Hu, K. C. Saraswat and H-S. P. Wong, J. Appl. Phys. 107, 063712 (2010).

    Article  ADS  Google Scholar 

  24. J. Hu et al., Appl. Phys. Lett. 99, 252104 (2011).

    ADS  Google Scholar 

  25. X. Cui et al., Nano Lett. 17, 4781 (2017).

    Article  ADS  Google Scholar 

  26. V. Heine, Phys. Rev. 138, A1689 (1965).

    Article  ADS  Google Scholar 

  27. J. Tersoff, Phys. Rev. Lett. 52, 465 (1984).

    Article  ADS  Google Scholar 

  28. R. T. Tung, Phys. Rev. B 64, 205310 (2001).

    Article  ADS  Google Scholar 

  29. S-L. Li et al. Nano Lett. 13, 3546 (2013).

    Article  ADS  Google Scholar 

  30. S-L. Li et al., ACS Nano 8, 12836 (2014).

    Article  Google Scholar 

  31. C. Lee et al., ACS Nano 4, 2695 (2010).

    Article  Google Scholar 

  32. D. Lembke and A. Kis, ACS Nano 6, 10070 (2012).

    Article  Google Scholar 

  33. P. L. Hower and V. K. Reddi, IEEE Trans. Electron Devices 17, 320 (1970).

    Article  ADS  Google Scholar 

  34. T. Georgiou et al., Nat. Nanotechnol. 8, 100 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Kyung Hee University in 2016 (KHU-20160609) and by National Research Foundation of Korea (NRF) grants funded by the Korea government (No. 2017M1A7A1A01016262) and (No. 2017R1C1B2012227). This work was also supported by the Technology Innovation Program (or Industrial Strategic Technology Development Program (No. 1008 5646, Memristor Fault-Aware Neuromorphic System for 3D Memristor array) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). This research was also supported by the Basic Science Research Program through the NRF funded by the Ministry of Education (grant No. 2018R1A6A1A03025708, Study on integrated multifunctional sensor platforms based on autonomous energy).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seunghyun Lee or Lok-won Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Kim, Lw. Effect of Contact Resistance on the High-Field Characteristics of MoS2 Transistors. J. Korean Phys. Soc. 75, 471–475 (2019). https://doi.org/10.3938/jkps.75.471

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.75.471

Keywords

Navigation