Log in

Gate-tunable Thermoelectric Effects in a Graphene/WS2 van der Waals Heterostructure

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Thermoelectric effects of Dirac fermions through a van der Waals (vdW) heterostructure consisting of graphene and tungsten diselenide (WS2) are theoretically investigated. When the lattice temperature of the top graphene layer differs from that of the bottom graphene layer, thermally excited Dirac fermions can be transferred through the WS2 layer, generating tunnel current. This thermoelectric tunnel current shows drastic changes in its characteristics as a consequence of gatevoltage tuning. The thermoelectric power of the proposed graphene–WS2 vdW heterostructure is characterized by examining the Seebeck coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov et al., Nature 438, 197 (2005).

    Article  ADS  Google Scholar 

  2. Y. B. Zhang, Y. W. Tan, H. L. Storm and P. Kim, Nature 438, 201 (2005).

    Article  ADS  Google Scholar 

  3. T. Ando, Y. Zheng and H. Suzuura, J. Phys. Soc. Jpn. 71, 1318 (2002).

    Article  ADS  Google Scholar 

  4. J. S. Bunch et al., Science 315, 490 (2007).

    Article  ADS  Google Scholar 

  5. J. C. Meyer et al., Nature 446, 60 (2007).

    Article  ADS  Google Scholar 

  6. A. Kuzmenko, E. Van Heumen, F. Carbone and D. Van Der Marel, Phys. Rev. Lett. 100, 117401 (2008).

    Article  ADS  Google Scholar 

  7. R. R. Nair et al., Science 320, 1308 (2008).

    Article  ADS  Google Scholar 

  8. C. Lee, X. Wei, J. W. Kysar and J. Hone, Science 321, 385 (2008).

    Article  ADS  Google Scholar 

  9. K. S. Kim et al., Nature 457, 706 (2009).

    Article  ADS  Google Scholar 

  10. A. A. Balandin, Nat. Maters. 10, 569 (2011).

    Article  ADS  Google Scholar 

  11. K. I. Bolotin et al., Solid State Commun. 146, 351 (2008).

    Article  ADS  Google Scholar 

  12. X. Du, I. Skachko, A. Barker and E. Y. Andrei, Nat. Nanotechnol. 3, 491 (2008).

    Article  ADS  Google Scholar 

  13. M. C. Lemme, T. J. Tchtermeyer, M. Baus and H. A. Kurz, IEEE Electron Device Lett. 28, 282 (2007).

    Article  ADS  Google Scholar 

  14. I. Meric et al., Nat. Nanotechnol. 3, 654 (2008).

    Article  ADS  Google Scholar 

  15. S. Kim et al., Appl. Phys. Lett. 94, 062107 (2009).

    Article  ADS  Google Scholar 

  16. M. I. Katsnelson, K. S. Novoselov and A. K. Geim, Nat. Phys. 2, 620 (2006).

    Article  Google Scholar 

  17. C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).

    Article  ADS  Google Scholar 

  18. P. E. Allain and J. N. Fuchs, Eur. Phys. J. B 83, 301 (2011).

    Article  ADS  Google Scholar 

  19. L. Britnell et al., Science 335, 947 (2012).

    Article  ADS  Google Scholar 

  20. C. R. Dean et al., Nat. Nanotechnol. 5, 722 (2010).

    Article  ADS  Google Scholar 

  21. R. Decker et al., Nano Lett. 11, 2291 (2011).

    Article  ADS  Google Scholar 

  22. J. Xue et al., Nat. Mater. 10, 282 (2011).

    Article  ADS  Google Scholar 

  23. W. J. Yu et al., Nat. Mater. 12, 246 (2013).

    Article  ADS  Google Scholar 

  24. N. Myoung, K. Seo, S. J. Lee and G. Ihm, ACS Nano, 7, 7021 (2013).

    Article  Google Scholar 

  25. K. T. Lam, G. Seol and J. Guo, Appl. Phys. Lett. 105, 013112 (2014).

    Article  ADS  Google Scholar 

  26. F. H. L. Koppens et al., Nat. Nanotechnol. 9, 780 (2014).

    Article  ADS  Google Scholar 

  27. F. Withers et al., Nat. Mater. 14, 301 (2015).

    Article  ADS  Google Scholar 

  28. N. Myoung, H. C. Park and S. J. Lee, Sci. Rep. 6, 25253 (2016).

    Article  ADS  Google Scholar 

  29. S. Cha et al., Nat. Nanotechnol. https://doi.org/10.1038/s41565-018-0195-y.(2018)

    Google Scholar 

  30. A. Avsar et al., Adv. Mater. 30, 1707200 (2018).

    Article  Google Scholar 

  31. R. J. T. Nicholl et al., Nat. Commun. 6, 8789 (2015).

    Article  Google Scholar 

  32. Y. D. Kim et al., Nat. Nanotechnol. 10, 676 (2015).

    Article  ADS  Google Scholar 

  33. Y. D. Kim et al., Nano Lett. 18, 934 (2018).

    Article  ADS  Google Scholar 

  34. J. F. Rodriguez-Nieva, M. S. Dresselhaus and L. S. Levitov, Nano Lett. 15, 1451 (2015).

    Article  ADS  Google Scholar 

  35. J. F. Rodriguez-Nieva, M. S. Dresselhaus and C. W. Song, Nano Lett. 16, 6036 (2016).

    Article  ADS  Google Scholar 

  36. W. Zhao et al., ACS Nano 7, 791 (2013).

    Article  Google Scholar 

  37. S. Jung et al., Sci. Rep. 5, 16642 (2015).

    Article  ADS  Google Scholar 

  38. S. Jung et al., Nano Lett. 17, 206 (2016).

    Article  ADS  Google Scholar 

  39. T. Georgiu et al., Nat. Nanotechnol. 8, 100 (2013).

    Article  ADS  Google Scholar 

  40. N. Huo et al., J. Mater. Chem. C 3, 5467 (2015)

    Article  Google Scholar 

  41. H. K. Choi et al., Nanoscale 9, 18644 (2017).

    Article  Google Scholar 

  42. P. S. Mahapatra, K. Sarkar, H. R. Krishnamurthy, S. Mukerjee and A. Ghosh, Nano Lett. 17, 6822 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nojoon Myoung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Son, M., Jeong, H. et al. Gate-tunable Thermoelectric Effects in a Graphene/WS2 van der Waals Heterostructure. J. Korean Phys. Soc. 73, 940–944 (2018). https://doi.org/10.3938/jkps.73.940

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.940

Keywords

Navigation