Log in

Changes in physical properties of graphene oxide with thermal reduction

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Reduced graphene oxide (rGO) has attracted significant attention as an easily fabricable twodimensional material. Depending on the oxygen-containing functional groups (OFGs) in an rGO specimen, the optical and electrical properties can vary significantly, directly affecting the performance of devices in which rGO is implemented. Here, we investigated the optical and electrical properties of GO treated with various annealing (reduction) temperatures from 350 to 950 °C in H2 ambient. Using diverse characteristic tools, we found that the transmittance, nanoscale domain size, OFGs in GO and rGO, and Schottky barrier height (SBH) measured on n-type GaN are significantly influenced by the annealing temperature. The relative intensity of the defect-induced band in Raman spectroscopy showed a minimum at the annealing temperature of approximately 350 °C, before the OFGs in rGO showed vigorous changes in relative content. When the domain size of rGO reached a minimum at the annealing temperature of 650 °C, the SBH of rGO/GaN showed the maximum value of 1.07 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britne, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi and A. K. Geim, Nano Lett. 11, 2396 (2011).

    Article  ADS  Google Scholar 

  2. C. Lee, X. Wei, J. W. Kysar and J. Hone, Science 321, 385 (2008).

    Article  ADS  Google Scholar 

  3. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, Nano Lett. 8, 902 (2008).

    Article  ADS  Google Scholar 

  4. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, Science 320, 1308 (2008).

    Article  ADS  Google Scholar 

  5. J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. Van der Zande, J. M. Parpia, H. G. Craighead and P. L. McEuen, Nano Lett. 8, 2458 (2008).

    Article  ADS  Google Scholar 

  6. Z. Yan, G. Liu, J. M. Khan and A. A. Balandin, Nat. Commun. 3, 827 (2012).

    Article  ADS  Google Scholar 

  7. R. Garg, N. K. Dutta and N. R. Choudhury, Nanomaterials 4, 267 (2014).

    Article  Google Scholar 

  8. A. K. Geim, Science 324, 1530 (2009).

    Article  ADS  Google Scholar 

  9. R. K. Layek and A. K. Nandi, Polymer 54, 5087 (2013).

    Article  Google Scholar 

  10. V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril and K. S. Kim, Chem. Rev. 112, 6156 (2012).

    Article  Google Scholar 

  11. X. Li, D. **e, H. Park, M. Zhu, T. H. Zeng, K. Wang, J. Wei, D. Wu, J. Kong and H. Zhu, Nanoscale 5, 1945 (2013).

    Article  ADS  Google Scholar 

  12. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang and G. Yu, Nano Lett. 9, 1752 (2009).

    Article  ADS  Google Scholar 

  13. H. Wang, T. Maiyalagan and X. Wang, ACS Catal. 2, 781 (2012).

    Article  Google Scholar 

  14. J. Gebhardt, R. J. Koch, W. Zhao, O. Höfert, K. Gotterbarm, S. Mammadov, C. Papp, A. Görling, H-P. Steinrück and Th. Seyller, Phys. Rev. B: Condens. Matter Mater. Phys. 87, 155437 (2013).

    Article  ADS  Google Scholar 

  15. M. Ao, Q. Jiang, R. Q. Zhang, T. T. Tan and S. Li, J. Appl. Phys. 105, 074307 (2009).

    Article  ADS  Google Scholar 

  16. Y. Zhu, S. Murali, W. Cai, X. Li, J. W Suk, J. R. Potts and R. S. Ruoff, Adv. Mater. 22, 3906 (2010).

    Article  Google Scholar 

  17. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu and J. M. Tour, ACS Nano 4, 4806 (2010).

    Article  Google Scholar 

  18. N. Han, T. V. Cuong, M. Han, B. D. Ryu, S. Chandramohan, J. B. Park, J. H. Kang, Y-J. Park, K. B. Ko, H. Y. Kim, H. K. Kim, J. H. Ryu, Y. S. Katharria, C-J. Choi and C-H. Hong, Nat. Commun. 4, 1452 (2013).

    Article  Google Scholar 

  19. B. D. Ryu, M. Han, N. Han, Y. J. Park, K. B. Ko, T. H. Lim, S. Chandramohan, T. V. Cuong, C-J. Choi, J. Cho and C-H. Hong, ACS Appl. Mater. Interfaces 6, 22451 (2014).

    Article  Google Scholar 

  20. H. Jeong, S. Y. Jeong, D. J. Park, H. J. Jeong, S. Jeong, J. T. Han, H. J. Jeong, S. Yang, H. Y. Kim, K-J. Baeg, S. J. Park, Y. H. Ahn, E-K. Suh, G-W. Lee, Y. H. Lee and M. S. Jeong, Sci. Rep. 5, 7778 (2015).

    Article  Google Scholar 

  21. N. Prakash, M. Singh, G. Kumar, A. Barvat, K. Anand, P. Pal, S. P. Singh and S. P. Khanna, Appl. Phys. Lett. 109, 242102 (2016).

    Article  ADS  Google Scholar 

  22. S. Pei and H-M. Cheng, Carbon 50, 3210 (2012).

    Article  Google Scholar 

  23. X. Gao, J. Jang and S. Nagase, J. Phys. Chem. C 114, 832 (2009).

    Article  Google Scholar 

  24. G. Williams, B. Seger and P. V. Kamat, ACS Nano 2, 1487 (2008).

    Article  Google Scholar 

  25. W. S. Hummers Jr. and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).

    Article  Google Scholar 

  26. M. Acik, G. Lee, C. Mattevi, M. Chhowalla, K. Cho and Y. Chabal, Nat. Mater. 9, 840 (2010).

    Article  ADS  Google Scholar 

  27. M. Zhu, X. Li, Y, Guo, X. Li, P. Sun, X. Zang, K. Wang, M. Zhong, D. Wu and H. Zhu, Nanoscale 6, 4909 (2014).

    Article  ADS  Google Scholar 

  28. L. G. Cançado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhães-Paniago and M. A. Pimenta, Appl. Phys. Lett. 88, 163106 (2006).

    Article  ADS  Google Scholar 

  29. M. Acik, G. Lee, C. Mattevi, A. Pirkle, R. M. Wallace, M. Wallace, M. Chhowalla, K. Cho and Y. Chabal, J. Phys. Chem. C 115, 19761 (2011).

    Article  Google Scholar 

  30. A. Ganguly, S. Sharma, P. Papakonstantinou and J. Hamilton, J. Phys. Chem. C 115, 17009 (2011).

    Article  Google Scholar 

  31. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel and M. Chhowalla, Adv. Funct. Mater. 19, 2577 (2009).

    Article  Google Scholar 

  32. E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, 2nd ed (Oxford Science, Oxford, 1988), p. 15.

    Google Scholar 

  33. S. Chand and J. Kumar, Semicond. Sci. Technol. 10, 1680 (1995).

    Article  ADS  Google Scholar 

  34. P. V. Kumar, M. Bernardi and J. C. Grossman, ACS Nano 7, 1638 (2013).

    Article  Google Scholar 

  35. S. Kim, T. H. Seo, M. J. Kim, K. M. Song, E-K. Suh and H. Kim, Nano Res. 8, 1327 (2015).

    Article  Google Scholar 

  36. B. Pandit, T. H. Seo, B. D Ryu and J. Cho, AIP Advances 6, 065007 (2016).

    Article  ADS  Google Scholar 

  37. N. D. K. Tu, J. Choi, C. R. Park and H. Kim, Chem. Mater. 27, 7362 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaehee Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandit, B., Jo, C.H., Joo, K.S. et al. Changes in physical properties of graphene oxide with thermal reduction. Journal of the Korean Physical Society 71, 156–160 (2017). https://doi.org/10.3938/jkps.71.156

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.71.156

Keywords

Navigation