Log in

Observation of oversaturation-induced defect formation in tungsten irradiated by low energy deuterium ion

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The type of induced material damage in the tungsten irradiated by using deuterium ions was investigated for various value of the fluence at low energy. Experiments were carried out in an electron cyclotron resonance (ECR) plasma source that provided an ion flux of 2.8 × 1021 D +2 /m2s and a sheath energy of 100 eV/D +2 on the tungsten target. The energy of irradiated ions was much smaller than the threshold energy for generating cascade collisional damage (∼ 250 eV) in tungsten and was similar of the plasma at the first wall of KSTAR. The target temperature was kept as 700 − 800 K by using an active cooling system. Secondary ion mass spectroscopy (SIMS) was employed to observe the depth profiles of deuterium. The peak of the trapped deuterium concentration in the irradiated tungsten was located near 16 − 17 nm for 2.0 − 4.0 × 1025 D 2/m2, which is far deeper than the 1.6 nm for ion implantation at 100 eV/D +2 ions. Thermal desorption spectroscopy (TDS) data were analyzed to determine the binding energy (E b = 1.45 eV) of trapped deuterium, which corresponded to an oversaturation-induced vacancy. This observation is very important for understanding the refueling property of the retained deuterium during steady-state fusion plasma operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Causey and T. J. Venhaus, Phys. Scr. T94, 9 (2001).

    Article  ADS  Google Scholar 

  2. J. Roth and K. Schmid, Phys. Scr. T145, 014031 (2011).

    Article  ADS  Google Scholar 

  3. Z. Tian, J. W. Davis and A. A. Haasz, J. Nucl. Mater. 399, 101 (2010).

    Article  ADS  Google Scholar 

  4. Y. Hatano et al., Mater. Trans. 54, 437 (2013).

    Article  Google Scholar 

  5. T. Tanabe, Phys. Scr. T159, 014044 (2014).

    Article  ADS  Google Scholar 

  6. Y. Liu, T. Ahlgren, L. Bukonte, K. Nordlund, X. Shu, Y. Yu, X. Li and G. Lu, AIP Adv. 3, 122111 (2013).

    Article  ADS  Google Scholar 

  7. S. Qin, S. **, L. Sun, H. Zhou, Y. Zhang and G. Lu, J. Nucl. Mater. 465, 135 (2015).

    Article  ADS  Google Scholar 

  8. S. Lim, H. Kim, Y. **, J. Lee, J. Song and G. Kim, J. Nucl. Mater. 463, 753 (2015).

    Article  ADS  Google Scholar 

  9. F. F. Chen, J. Nucl. Eng. Part C 7, 41 (1965).

    Google Scholar 

  10. J. Bak, H. Kim, J. Kim, K. You and S. Hong, J. Korean Phys. Soc. 65, 1232 (2014).

    Article  ADS  Google Scholar 

  11. J. Bak, H. Kim, J. Kim, K. You and S. Hong, Contrib. Plasma Phys. 53, 69 (2013).

    Article  ADS  Google Scholar 

  12. J. F. Ziegler, M. D. Ziegler and J. P. Biersack, Nucl. Instrum. Meth Phys. Res., Sect. B 268, 1818 (2010).

    Article  ADS  Google Scholar 

  13. R. N. Stuart, M. W. Guinan and R. J. Borg, Radiation Effect 30, 129 (1976).

    Article  Google Scholar 

  14. B. Terreault, G. Ross, R. G. St. Jacques and G. Veilleux, J. Appl. Phys. 51, 1491 (1980).

    Article  ADS  Google Scholar 

  15. R. A. Causey, R. Doerner, H. Fraserc, R. D. Kolasinski, J. Smugeresky, K. Umstadter and R. Williams, J. Nucl. Mater. 390–391, 717 (2009).

    Article  Google Scholar 

  16. W. M. Shu, G. Luo and T. Yamanishi, J. Nucl. Mater. 367–370, 1463 (2007).

    Article  Google Scholar 

  17. M. Balden, S. Lindig, A. Manhard and J. You, J. Nucl. Mater. 414, 69 (2012).

    Article  ADS  Google Scholar 

  18. P. A. Redhead, Vacuum 12, 203 (1962).

    Article  Google Scholar 

  19. R. L. Blaine and H. E. Kissinger, Thermochim. Acta 540, 1 (2012).

    Article  Google Scholar 

  20. A. M. de Jong and J. W. Niemantsverdriet, Surf. Sci. 233, 355 (1990).

    Article  ADS  Google Scholar 

  21. O. V. Ogorodnikova, J. Roth and M. Mayer, J. Appl. Phys. 103, 034902 (2008).

    Article  ADS  Google Scholar 

  22. Y. Hatano et al., Mater. Trans. 54, 437 (2013).

    Article  Google Scholar 

  23. A. H. M. Krom and A. Bakker, Metall. Mater. Trans. B 31, 1475 (2000).

    Article  Google Scholar 

  24. R. G. Wilson, Int. J. Mass Spectrom. Ion Processes I43, 43 (1995).

    Article  ADS  Google Scholar 

  25. L. Sun, S. **, H. Zhou, Y. Zhang, W. Zhang, Y. Ueda, H. Lee and G. Lu, J. Phys.: Condens. Matter 26, 395402 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gon-Ho Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**, Y., Song, JM., Roh, KB. et al. Observation of oversaturation-induced defect formation in tungsten irradiated by low energy deuterium ion. Journal of the Korean Physical Society 69, 518–524 (2016). https://doi.org/10.3938/jkps.69.518

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.518

Keywords

Navigation