Log in

Gamow’s calculation of the neutron star’s critical mass revised

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

It has at times been indicated that Landau introduced neutron stars in his classic paper of 1932. This is clearly impossible because the discovery of the neutron by Chadwick was submitted more than one month after Landau’s work. Therefore, and according to his calculations, what Landau really did was to study white dwarfs, and the critical mass he obtained clearly matched the value derived by Stoner and later by Chandrasekhar. The birth of the concept of a neutron star is still today unclear. Clearly, in 1934, the work of Baade and Zwicky pointed to neutron stars as originating from supernovae. Oppenheimer in 1939 is also well known to have introduced general relativity (GR) in the study of neutron stars. The aim of this note is to point out that the crucial idea for treating the neutron star has been advanced in Newtonian theory by Gamow. However, this pioneering work was plagued by mistakes. The critical mass he should have obtained was 6.9M , not the one he declared, namely, 1.5M . Probably, he was taken to this result by the work of Landau on white dwarfs. We revise Gamow’s calculation of the critical mass regarding calculational and conceptual aspects and discuss whether it is justified to consider it the first neutron-star critical mass. We compare Gamow’s approach to other early and modern approaches to the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Gamow, Structure of Atomic Nuclei and Nuclear Transformations (Oxford Press, 1937), Ch. 12, Sec. 3.

    MATH  Google Scholar 

  2. E. C. Stoner, Philos. Mag. 7, 63 (1929).

    MATH  Google Scholar 

  3. L. D. Landau, E. M. Lifshitz, Course of Theoretical Physics (Pergamon Press, New York, 1980), Vol. 5, Sec. 57; Vol. 5, Sec. 106.

    Google Scholar 

  4. A. Einstein, Ann. Phys. (Berlin) 18, 639 (1905).

    Article  ADS  Google Scholar 

  5. L. D. Landau, Phys. Z. Sowjet. 1, 285 (1932).

    MATH  Google Scholar 

  6. J. Chadwick, Nature 129, 312 (1932).

    Article  ADS  Google Scholar 

  7. J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374 (1939).

    Article  MATH  ADS  Google Scholar 

  8. R. Belvedere, D. Pugliese, J. A. Rueda, R. Ruffini and S.-S. Xue, Nuc. Phys. A 883, 1 (2012).

    Article  ADS  Google Scholar 

  9. R. C. Tolman, Phys. Rev. 55, 364 (1939).

    Article  ADS  Google Scholar 

  10. M. Rees, R. Ruffini and J. A. Wheeler, Black Holes, Gravitational Waves and Cosmology: An Introduction to Current Research. (Gordon and Breach Science Publishers, New York, 1974), Ch. 2.

    Google Scholar 

  11. R. Belvedere, K. Boshkayev, J. A. Rueda and R. Ruffini, Nucl. Phys. A 921, 33 (2013).

    Article  ADS  Google Scholar 

  12. R. B. Wiringa, V. G. J. Stoks and R. Schiavilla, Phys. Rev. C 51, 38 (1995).

    Article  ADS  Google Scholar 

  13. M. Rotondo, J. A. Rueda, R. Ruffini and S.-S. Xue, Phys. Lett. B 701, 667 (2011).

    Article  ADS  Google Scholar 

  14. J. A. Rueda, R. Ruffini and S.-S. Xue, Nuc. Phys. A 872, 286 (2011).

    Article  ADS  Google Scholar 

  15. J. M. Lattimer, ARNPS 62, 485 (2012).

    ADS  Google Scholar 

  16. W. Anderson, Z. Phys. 56, 851 (1929).

    Article  MATH  ADS  Google Scholar 

  17. S. Chandrasekhar, Astrophys. J. 74, 81 (1931).

    Article  MATH  ADS  Google Scholar 

  18. S. Chandrasekhar, Mon. Not. R. Astron. Soc. 91, 456 (1931).

    Article  ADS  Google Scholar 

  19. E. C. Stoner, Mon. Not. R. Astron. Soc. 92, 651 (1932).

    Article  ADS  Google Scholar 

  20. W. Baade and F. Zwicky, Proc. Natl. Acad. Sci. U.S.A. 20, 259 (1934).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Ludwig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludwig, H., Ruffini, R. Gamow’s calculation of the neutron star’s critical mass revised. Journal of the Korean Physical Society 65, 892–896 (2014). https://doi.org/10.3938/jkps.65.892

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.65.892

Keywords

Navigation