Log in

Microscopic analysis of thermally-driven formation of Cu-Si alloy nanoparticles in a Cu/Si template

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Selective thermal diffusion of Cu into a 100-nm-thick SiO2-patterned Si(001) substrate was investigated to elucidate the spontaneous formation of Cu-Si alloy nanoparticles. Transmission electron microscopy and energy dispersive X-ray spectroscopy provided the indirect evidence for the formation on the substrate’s surface of nanoparticles that served as a catalyst to grow SiO2 nanowires selectively in window regions. The microstructural analysis revealed that thermal annealing caused selective diffusion of Cu into the Si matrix in window regions only and that the Cu-Si alloy nanoparticles were formed at 900 °C although the diffusion of Cu into Si was already significant at 700 °C. The nanoparticles that were sparsely distributed below the surface of the Si matrix did not serve as a catalyst for growing SiO2 nanowires, and the chemical composition analysis showed that the nanoparticles at the tip of SiO2 nanowires were Cu3Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).

    Article  ADS  Google Scholar 

  2. X. Wang, C. J. Summers, and Z. L. Wang, Nano Lett. 4, 423 (2004).

    Article  ADS  Google Scholar 

  3. A. M. Morales and C. M. Lieber, Science 279, 208 (1998).

    Article  ADS  Google Scholar 

  4. A. I. Persson, M. W. Larsson, S. Stenstrom, B. J. Ohlsson, L. Samuelson, and L. R. Wallenberg, Nat. Mater. 3, 677 (2004).

    Article  ADS  Google Scholar 

  5. K. A. Dick, K. Deppert, T. Martensson, B. Mandl, L. Samuelson, and W. Seifert, Nano Lett. 5, 761 (2005).

    Article  ADS  Google Scholar 

  6. H. F. Yan, Y. J. **ng, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. **, and S. Q. Feng, Chem. Phys. Lett. 323, 224 (2000).

    Article  ADS  Google Scholar 

  7. E. K. Lee, B. L. Choi, Y. D. Park, Y. Kuk, S. Y. Kwon, and H. J. Kim, Nanotechnology 19, 185701 (2000).

    Article  ADS  Google Scholar 

  8. H. W. Kim, S. H. Shim, and J. W. Lee, Physica E 37, 163 (2007).

    Article  ADS  Google Scholar 

  9. J. H. Kim and C. S. Yoon, J. Phys. Chem. C 112, 4463 (2008).

    Article  Google Scholar 

  10. D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. **ong, and S. Q. Feng, Appl. Phys. Lett. 73, 3076 (1998).

    Article  ADS  Google Scholar 

  11. Z. Q. Liu, S. S. **e, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zou, and G. Wang, J. Mater. Res. 16, 683 (2001).

    Article  ADS  Google Scholar 

  12. Z. **ao, L. Zhang, G. Meng, X. Tian, H. Zeng, and M. Fang, J. Phys. Chem. B 110, 15724 (2006).

    Article  Google Scholar 

  13. Z. Pan, S. Dai, D. B. Beach, and D. H. Lowndes, Nano Lett. 3, 1279 (2003).

    Article  ADS  Google Scholar 

  14. J. H. Kim, S. S. Kim, and C. S. Yoon, Nanotechnology 19, 465601 (2008).

    Article  ADS  Google Scholar 

  15. J. H. Kim, H. J. Woo, C. K. Kim, and C. S. Yoon, Nanotechnology 20, 235306 (2009).

    Article  ADS  Google Scholar 

  16. M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Blasing, Appl. Phys. Lett. 80, 661 (2002).

    Article  ADS  Google Scholar 

  17. A. Cros, M. O. Aboelfotoh, and K. N. Tu, J. Appl. Phys. 67, 3328 (1990).

    Article  ADS  Google Scholar 

  18. T. C. Frank and J. L. Falconer, Applications. Surf. Sci. 14, 359 (1982).

    Article  ADS  Google Scholar 

  19. S. H. Corn, J. L. Falconer, and A. W. Czanderna, J. Vac. Sci. Tech. A 6, 1012 (1988).

    Article  ADS  Google Scholar 

  20. Y. He, Y. Wang, X. Yu, H. Li, and X. Huang, J. Electrochem. Soc. 159, A2076 (2012).

    Article  Google Scholar 

  21. M. Ronay and R. G. Schad, Phys. Rev. Lett. 64, 2042 (1990).

    Article  ADS  Google Scholar 

  22. A. A. Istratov and E. R. Weber, J. Electrochem. Soc. 149, G21 (2002).

    Article  Google Scholar 

  23. M. Setton, J. Van der Spiegel, and B. Rothman, Appl. Phys. Lett. 57, 357 (1990).

    Article  ADS  Google Scholar 

  24. H. Okamoto, J. Phase Equilibria 23, 281 (2002).

    Article  Google Scholar 

  25. W. F. Banholzer and M. C. Burrell, Surf. Sci. 176, 125 (1986).

    Article  ADS  Google Scholar 

  26. D. Cheng, Y. Ogawa, H. Hamamura, H. Shirakawa, T. Osawa, S. Takami, and H. Komiyama, Jpn. J. Appl. Phys. 37, L607 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinkyo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, W., Jue, M., Lee, S. et al. Microscopic analysis of thermally-driven formation of Cu-Si alloy nanoparticles in a Cu/Si template. Journal of the Korean Physical Society 63, 2128–2132 (2013). https://doi.org/10.3938/jkps.63.2128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.2128

Keywords

Navigation