Log in

Inhibitory effect of citrus peel extract on lipid accumulation of 3T3-L1 adipocytes

  • Bioactive Meterials
  • Article
  • Published:
Journal of the Korean Society for Applied Biological Chemistry Submit manuscript

Abstract

Inhibitory effects of lipid accumulation by citrus peel extract were evaluated. Citrus peel extract (CPE) (500 μg/mL) inhibited lipid and triglyceride accumulation in 3T3-L1 adipocytes by more than 64.5 and 58.7%, respectively and suppressed glycerol-3-phosphate dehydrogenase to the levels of preadipocytes. The expression of perilipin mRNA in 3T3-L1 adipocytes treated with CPE was significantly lower than that in untreated adipocytes (p<0.05), with no accompanying increase in lipolysis-related mRNA. Flavonoid compositions of CPE were hesperidin 13.79, narirutin 7, and naringin 262.5 μg/g, respectively. These findings suggest CPE may indirectly stimulate lipolysis by inhibiting protection of physical barrier on lipid droplet to hinder lipid accumulation in 3T3-L1 adipocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amri EZ, Bertrand B, Ailhaud G, and Grimaldi P (1991) Regulation of adipose cell differentiation. I. Fatty acids are inducers of the aP2 gene expression. J Lipid Res 32, 1449–1456.

    CAS  Google Scholar 

  • Arner P, Pettersson A, Mitchell PJ, Dunbar JD, Kharitonenkov A, and Ryden M (2008) FGF21 attenuates lipolysis in human adipocytes: a possible link to improved insulin sensitivity. FEBS Letters 582, 1725–1730.

    Article  CAS  Google Scholar 

  • Benavente-García O, Castillo J, Marin FR, Ortuño A, and Del Río JA (1997) Uses and properties of Citrus flavonoids. J Agri Food Chem 45, 4505–4515.

    Article  Google Scholar 

  • Bezaire V, Mairal A, Anesia R, Lefort C, and Langin D (2009) Chronic TNFá and cAMP pre-treatment of human adipocytes alter HSL, ATGL and perilipin to regulate basal and stimulated lipolysis. FEBS Letters 583, 3045–3049.

    Article  CAS  Google Scholar 

  • Blouin CM, Lay SL, Lasnier F, Dugail I, and Hajduch E (2008) Regulated association of caveolins to lipid droplets during differentiation of 3T3-L1 adipocytes. Biochem Bioph Res Co 376, 331–335.

    Article  CAS  Google Scholar 

  • Bok SH, Lee SH, Park YB, Bae KH, Son KH, Jeong TS, and Choi MS (1999) Plasma and hepatic cholesterol and hepatic activities of 3-hydroxy-3-methyl-glutaryl-CoA reductase and acyl CoA: cholesterol transferase are lower in rats fed citrus peel extract or a mixture of citrus bioflavonoids. J Nutr 129, 1182–1185.

    CAS  Google Scholar 

  • Brasaemle DL, Dolios G, Shapiro L, and Wang R (2004) Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 279, 46835–46842.

    Article  CAS  Google Scholar 

  • Camp HS, Ren D, and Leff T (2002) Adipogenesis and fat-cell function in obesity and diabetes. Trends Mol Med 8, 442–447.

    Article  CAS  Google Scholar 

  • Cheigh CI, Jung WG, Chung EY, Ko MJ, Cho SW, Lee JH, Chang PS, Park YS, Paik HD, Kim KT, and Chung MS (2010) Comparison on the extraction efficiency and antioxidant activity of flavonoid from citrus peel by different extraction methods. Food Eng Prog 14, 166–172.

    Google Scholar 

  • Chiba H, Uehara M, Wu J, Wang X, Masuyama R, Suzuki K, Kanazaw K, and Ishimi Y (2003) Hesperidin, a citrus flavonoid, inhibits bone loss and decreases serum and hepatic lipids in ovariectomized mice. J Nutr 133, 1982–1987.

    Google Scholar 

  • Coe NR, Simpson MA, and Bernlohr DA (1999) Targeted disruption of the adipocyte lipid-binding protein (aP2 protein) gene impairs fat cell lipolysis and increases cellular fatty acid levels. J Lipid Res 40, 967–972.

    CAS  Google Scholar 

  • Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, and Shimomura I (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114, 1752–1761.

    CAS  Google Scholar 

  • Garg A, Garg S, Zaneveld LJD, and Singla AK (2001) Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytother Res 15, 655–669.

    Article  CAS  Google Scholar 

  • Hirata T, Fujii M, Akita K, Yanaka N, Ogawa K, Kuroyanagi M, and Hongo D (2009) Identification and physiological evaluation of the components from citrus fruits as potential drugs for anti-corpulence and anticancer. Bioorgan Med Chem 17, 25–28.

    Article  CAS  Google Scholar 

  • Huang YS and Ho SC (2010) Polymethoxy flavones are responsible for the anti-inflammatory activity of citrus fruit peel. Food Chem 119, 868–873.

    Article  CAS  Google Scholar 

  • Hyon JS, Kang SM, Senevirathne M, Koh WJ, Yang TS, Oh MC, Oh CK, Jeon YJ, and Kim SH (2010) Antioxidative activities of dried and fresh citrus peels in Jeju. Korean J Food Cookery Sci 26, 88–94.

    Google Scholar 

  • Isabel AR and Maria HLR (2008) Naringin and naringenin determination and control in grapefruit juice by a validated HPLC method. Food Control 19, 432–438.

    Article  Google Scholar 

  • Iwashita K, Yamaki K, and Tsushida T (2001) Mioga (Zingiber mioga Rosc.) extract prevents 3T3-L1 differentiation into adipocytes and obesity in mice. Food Sci Technol Res 7, 164–170.

    Article  Google Scholar 

  • Jiang L, Zhang NX, Mo W, Wan R, Ma CG, Li X, Gu YL, Yang XY, Tang QQ, and Song HY (2008) Rehmannia inhibits adipocyte differentiation and adipogenesis. Biochem Bioph Res Co 371, 185–190.

    Article  CAS  Google Scholar 

  • Kawai T, Ng MCY, Hayes MG, Yoshiuchi I, Tsuchiya T, Robertson H, Cox NJ, Polonsky KS, Bell GI, and Ehrmann DA (2009) Variation in the perilipin gene (PLIN) affects glucose and lipid metabolism in non-Hispanic white women with and without polycystic ovary syndrome. Diabetes Res Clin Pr 86, 186–192.

    Article  CAS  Google Scholar 

  • Kong CS, Kim JA, Eom TK, and Kim SK (2010) Phosphorylated glucosamine inhibits adipogenesis in 3T3-L1 adipocytes. J Nutr Biochem 21, 438–443.

    Article  Google Scholar 

  • Lay SL and Dugail I (2009) Connecting lipid droplet biology and the metabolic syndrome. Prog Lipid Res 48, 191–195.

    Article  Google Scholar 

  • Lin J, Della-Fera MA, and Baile CA (2005) Green tea polyphenol epigallocatechin gallate inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes. Obesity Res 13, 982–990.

    Article  CAS  Google Scholar 

  • Matsuzawa Y, Funahashi T, and Nakamura T (1999) Molecular mechanism of metabolic syndrome X: contribution of adipocytokines adipocyte-derived bioactive substances. Ann NY Acad Sci 18, 146–154.

    Article  Google Scholar 

  • Morikawa K, Nonaka M, Mochizuki H, Handa K, Hanada H, and Hirota K (2008) Naringenin and hesperetin induce growth arrest, apoptosis, and cytoplasmic fat deposit in human preadipocytes. J Agri Food Chem 56, 11030–11037.

    Article  CAS  Google Scholar 

  • Nugroho A, Park MG, ** SE, Choi JS, and Park HJ (2009) Quantitative analysis of flavanone glycosides and peroxynitrite scavenging effect of the five oriental medicinal drugs (Aurantii nobilis Pericarpium, Citrii unshiu Pericarpium, Citrii unshiu Semen, Aurantii fructus, Poncirii fructus). Korean J Pharmacogn 40, 370–375.

    Google Scholar 

  • Ogawa T, Tabata H, Katsube T, Ohta Y, Yamasaki Y, Yamasaki M, and Shiwaku K (2010) Suppressive effect of hot water extract of wasabi (Wasabia japonica Matsum.) leaves on the differentiation of 3T3-L1 preadipocytes. Food Chem 118, 239–244.

    Article  CAS  Google Scholar 

  • Persson J, Degerman E, Nilsson J, and Lindholm MW (2007) Perilipin and adipophilin expression in lipid loaded macrophages. Biochem Bioph Res Co 363, 1020–1026.

    Article  CAS  Google Scholar 

  • Ramirez-Zacarìas JL, Castro-Muñozledo F, and Kuri-Harcuch W (1992) Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O. Histochemistry 97, 493–497.

    Article  Google Scholar 

  • Reaven GM and Hoffman BB (1987) A role for insulin in aetiology and course of hypertension. The Lancet 2, 435–437.

    Article  CAS  Google Scholar 

  • Rehman ZU (2006) Citrus peel extract-a natural source of antioxidant. Food Chem 99, 450–454.

    Article  Google Scholar 

  • Rice-Evans CA, Miller NJ, and Paganga G (1996) Structureantioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio Med 20, 933–956.

    Article  CAS  Google Scholar 

  • Student AK, Hsu RY, and Lane MD (1980) Induction of fatty acid synthetase synthesis in differentiating 3T3-L1 preadipocytes. J Biol Chem 255, 4745–4750.

    CAS  Google Scholar 

  • Telli C, Serper A, Dogan AL, and Guc D (1999) Evaluation of the cytotoxicity of calcium phosphate root canal sealers by MTT assay. J Endodont 25, 811–813.

    Article  CAS  Google Scholar 

  • Xu A, Wang Y, Xu JY, Stejskal D, Tam S, Zhang J, Wat NS, Wong WK, and Lam KSL (2006) Adipocyte fatty acidbinding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin Chem 52, 405–413.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo-Heon Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, H.K., Jeong, Y.S., Park, CD. et al. Inhibitory effect of citrus peel extract on lipid accumulation of 3T3-L1 adipocytes. J. Korean Soc. Appl. Biol. Chem. 54, 169–176 (2011). https://doi.org/10.3839/jksabc.2011.028

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.3839/jksabc.2011.028

Key words

Navigation