Log in

Indirect evaluation of the long-term oxidation properties of Al−21Ti−23Cr and Al−37Ti−12Cr coating materials for TiAl alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The most pertinent coating materials in the Al−Ti−Cr alloy system to improve the high temperature oxidation resistance of a TiAl alloy, with respect to oxidation properties, resistance to thermal stress, and chemical compatibility, are the two-phase alloys of Al−21Ti−23Cr (L12+Cr2Al) and Al−37Ti−12Cr (γ+TiAlCr). In this study, cyclic oxidation tests at 1000 °C and 1200 °C were performed for the specimens coated with both materials of 10 im thickness. Furthermore, breakaway oxidation caused by the formation of a rutile TiO2 scale was observed, though both bulk alloys showed very stable oxidation behavior. This phenomenon was resulted from the depleted Al content in the coating layer due to Al2O3 oxide growth and interdiffusion with the substrate. Considering the decrease of Al content due to oxide growth, the Al−21Ti−23Cr coating with the initial higher Al content was more effective for long-term oxidation protection of the TiAl alloy. On the other hand, when the Al content changes due to the interdiffusion with the substrate, the Al−37Ti−12Cr coating with a smaller compositional gradient with the TiAl substrate was more effective than the Al−21Ti−23Cr coating. Cyclic oxidation tests at 1000 °C and 1200 °C confirmed that for the longer lifetime of coating materials the initial Al content was more important than the smaller compositional gradient with the substrate. Consequently, the Al−21Ti−23Cr coating was considered as more effective one for the long-term oxidation resistance of TiAl alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. R. Boyer,Adv. Perform. Mater. 2, 349 (1995).

    Article  CAS  Google Scholar 

  2. S. Kim, D. Paik, I. Kim, H. Kim, and K. Park,Mat. Sci. Tech. 14, 822 (1998).

    CAS  Google Scholar 

  3. Y. D. Jang, D. B. Lee, and D. Y. Seo,Met. Mater.-Int. 8, 503 (2002).

    CAS  Google Scholar 

  4. Z. Tang, F. Wang, and W. Wu,Intermetallics 7, 1271 (1999).

    Article  CAS  Google Scholar 

  5. J. Y. Park, S. W. Park, H. N. Lee, M. H. Oh, and D. M. Wee,Scr. Metall. Mater. 36, 801 (1997).

    CAS  Google Scholar 

  6. H. N. Lee, Z. M. Park, M. H. Oh, and D. M. Wee,Scr. Metall. Mater. 41, 1073 (1999).

    CAS  Google Scholar 

  7. M. P. Brady, W. J. Brindley, J. L. Smialek, and I. E. Locci,JOM 48, 46 (1996).

    CAS  Google Scholar 

  8. J. Y. Park, M. H. Oh, D. M. Wee, S. Miura, and Y. Mishima,Scr. Metall. Mater. 36, 795 (1997).

    CAS  Google Scholar 

  9. J. K. Lee, J. Y. Park, M. H. Oh, and D. M. Wee,Intermetallics 8, 407 (2000).

    Article  CAS  Google Scholar 

  10. J. K. Lee, H. N. Lee, H. K. Lee, M. H. Oh, and D. M. Wee,Surf. Coat. Tech. 155, 59 (2002).

    Article  CAS  Google Scholar 

  11. J. K. Lee, M. H. Oh, H. K. Lee, and D. M. Wee,Surf. Coat. Tech. 182, 363 (2004).

    Article  CAS  Google Scholar 

  12. Z. Tang, F. Wang and W. Wu,Surf. Coat. Tech. 110, 57 (1998).

    Article  CAS  Google Scholar 

  13. H. Mabuchi, H. Tsuda, T. Kawakami, S. Nakamatsu, T. Matsui and K. Morii,Scr. Metall. Mater. 41, 511 (1999).

    CAS  Google Scholar 

  14. I. Gurrappa, S. Weinbruch, D. Naumenko and W. J. Quadakkers,Mater. Corr. 51, 224 (2000).

    Article  CAS  Google Scholar 

  15. C. E. Lowell, C. A. Barrett, R. W. Palmer, V. Au**, and H. B. Probst,Oxid. Met. 36, 81 (1991).

    Article  CAS  Google Scholar 

  16. R. A. Perkins and G. H. Meier,Proc. the Industry-University Advanced Materials Conference (ed., F. Smith), p. 92, Advanced Materials Institute (1989).

  17. W. J. Quadakkers, J. Nicholls, D. Naumenko, J. Wilber and L. Singheiser,European Federation of Corrosion Monograph (eds., M. Shutze, W. J. Quadakkers, and J. Nicholls), p. 93, The Institute of Materials, London (2001).

    Google Scholar 

  18. J. A. Nesbitt and R. W. Heckel,Metall. Trans. A 18, 2061 (1987).

    Article  Google Scholar 

  19. J. A. Nesbitt and R. W. Heckel,Metall. Trans. A 18, 2075 (1987).

    Article  Google Scholar 

  20. L. Niewolak, V. Shemet, A. Gil, L. Singheiser, and W. J. Quadakkers,European Federation of Corrosion Monograph (eds., M. Shutze, W. J. Quadakkers, J. Nicholls), p. 297, The Institute of Materials, London (2001).

    Google Scholar 

  21. C. A. Barrett,Oxid. Met. 30, 361 (1988).

    Article  CAS  Google Scholar 

  22. J. L. Klansky, J. P. Nic, and D. E. Mikkola,J. Mater. Res. 9, 255 (1994).

    Article  CAS  ADS  Google Scholar 

  23. V. K. Tolpygo and D. R. Clarke,Acta meter. 48, 3283 (2000).

    Article  CAS  Google Scholar 

  24. J. K. Lee, M. H. Oh, and D. M. Wee,Intermetallics 10, 347 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.K., Kim, S.H., Wee, D.M. et al. Indirect evaluation of the long-term oxidation properties of Al−21Ti−23Cr and Al−37Ti−12Cr coating materials for TiAl alloy. Met. Mater. Int. 14, 713–720 (2008). https://doi.org/10.3365/met.mat.2008.12.713

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.3365/met.mat.2008.12.713

Keywords

Navigation