Log in

Determination of the Pore Direction in a Crystalline Metal-Organic Framework by Raman Spectroscopy and Periodic Calculations Based on the Electron Density Functional Theory

  • Optical-Physical Methods of Research and Measurement
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

A method for the determination of pore orientation in metal-organic framework structures by polarized Raman spectra is proposed. The method involves sensitivity of the line intensity of Raman scattering to the geometry of propagation in a crystal. The operability of the method is shown by DUT-8 (Ni, Co) crystals. The obtained results are interpreted based on analysis of symmetry and direction of vibrations within periodic calculations of the electron density functional theory. The simultaneous approach allowed us to describe the vibrations and to find the principal crystal orientation collinear to the pore direction. The information on the pore orientation is necessary for problems of adsorption and design of complex multicomponent materials based on metal-organic framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. J. Kim, J.-U. Lee, and H. Cheong, ‘‘Polarized Raman spectroscopy for studying two-dimensional materials,’’ J. Phys.: Condens. Matter 32, 343001 (2020). https://doi.org/10.1088/1361-648x/ab8848

  2. B. Xu, N. Mao, Ya. Zhao, L. Tong, and J. Zhang, ‘‘Polarized Raman spectroscopy for determining crystallographic orientation of low-dimensional materials,’’ J. Phys. Chem. Lett. 12, 7442–7452 (2021). https://doi.org/10.1021/acs.jpclett.1c01889

    Article  Google Scholar 

  3. M. A. Pimenta, G. C. Resende, H. B. Ribeiro, and B. R. Carvalho, ‘‘Polarized Raman spectroscopy in low-symmetry 2D materials: Angle-resolved experiments and complex number tensor elements,’’ Phys. Chem. Chem. Phys. 23, 27103–27123 (2021). https://doi.org/10.1039/d1cp03626b

    Article  Google Scholar 

  4. Q. Song, X. Pan, H. Wang, K. Zhang, Q. Tan, P. Li, Yi. Wan, Yi. Wang, X. Xu, M. Lin, X. Wan, F. Song, and L. Dai, ‘‘The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy,’’ Sci. Rep. 6, 29254 (2016). https://doi.org/10.1038/srep29254

    Article  ADS  Google Scholar 

  5. L. Svenningsson and L. Nordstierna, ‘‘Polarized Raman spectroscopy strategy for molecular orientation of polymeric fibers with Raman tensors deviating from the molecular frame,’’ ACS Appl. Polym. Mater. 2, 4809–4813 (2011). https://doi.org/10.1021/acsapm.0c00762

    Article  Google Scholar 

  6. K. A. Okotrub, V. A. Zykova, S. V. Adishchev, and N. V. Surovtsev, ‘‘Determination of the orientation of phospholipid molecules in planar structures from Raman spectra,’’ Optoelectron., Instrum. Data Process. 55, 495–500 (2019). https://doi.org/10.3103/S8756699019050121

    Article  ADS  Google Scholar 

  7. Ya. Wang, C. Cong, C. Qiu, and T. Yu, ‘‘Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS\({}_{2}\) under uniaxial strain,’’ Small 9, 2857–2861 (2013). https://doi.org/10.1002/smll.201202876

    Article  Google Scholar 

  8. Z. Li, R. J. Young, I. A. Kinloch, N. R. Wilson, A. J. Marsden, and A. P. A. Raju, ‘‘Quantitative determination of the spatial orientation of graphene by polarized Raman spectroscopy,’’ Carbon 88, 215–224 (2015). https://doi.org/10.1016/j.carbon.2015.02.072

    Article  Google Scholar 

  9. G. S. Duesberg, I. Loa, M. Burghard, K. Syassen, and S. Roth, ‘‘Polarized Raman spectroscopy on isolated single-wall carbon nanotubes,’’ Phys. Rev. Lett. 85, 5436–5439 (2000). https://doi.org/10.1103/physrevlett.85.5436

    Article  ADS  Google Scholar 

  10. J. Thyr, L. Österlund, and T. Edvinsson, ‘‘Polarized and non-polarized Raman spectroscopy of ZnO crystals: Method for determination of crystal growth and crystal plane orientation for nanomaterials,’’ J. Raman Spectrosc. 52, 1395–1405 (2021). https://doi.org/10.1002/jrs.6148

    Article  ADS  Google Scholar 

  11. X. Liu, L. Zhang, and J. Wang, ‘‘Design strategies for MOF-derived porous functional materials: Preserving surfaces and nurturing pores,’’ J. Materiomics 7, 440–459 (2021). https://doi.org/10.1016/j.jmat.2020.10.008

    Article  Google Scholar 

  12. M. Safaei, M. M. Foroughi, N. Ebrahimpoor, S. Jahani, A. Omidi, and M. Khatami, ‘‘A review on metal-organic frameworks: Synthesis and applications,’’ TrAC Trends Anal. Chem. 118, 401–425 (2019). https://doi.org/10.1016/j.trac.2019.06.007

    Article  Google Scholar 

  13. Yi. Li and R. T. Yang, ‘‘Gas adsorption and storage in metal–organic framework MOF-177,’’ Langmuir 23, 12937–12944 (2007). https://doi.org/10.1021/la702466d

    Article  Google Scholar 

  14. Q. Qian, P. A. Asinger, M. J. Lee, G. Han, K. Mizrahi Rodriguez, S. Lin, F. M. Benedetti, A. X. Wu, W. S. Chi, and Z. P. Smith, ‘‘MOF-based membranes for gas separations,’’ Chem. Rev. 120, 8161–8266 (2020). https://doi.org/10.1021/acs.chemrev.0c00119

    Article  Google Scholar 

  15. Q. Wang and D. Astruc, ‘‘State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis,’’ Chem. Rev. 120, 1438–1511 (2019). https://doi.org/10.1021/acs.chemrev.9b00223

    Article  Google Scholar 

  16. A. E. Baumann, D. A. Burns, B. Liu, and V. S. Thoi, ‘‘Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices,’’ Commun. Chem. 2, 86 (2019). https://doi.org/10.1038/s42004-019-0184-6

    Article  Google Scholar 

  17. H. D. Lawson, S. P. Walton, and C. Chan, ‘‘Metal–organic frameworks for drug delivery: A design perspective,’’ ACS Appl. Mater. Interfaces 13, 7004–7020 (2021). https://doi.org/10.1021/acsami.1c01089

    Article  Google Scholar 

  18. A. Schneemann, V. Bon, I. I. Schwedler, I. Senkovska, S. Kaskel, and R. A. Fischer, ‘‘Flexible metal–organic frameworks,’’ Chem. Soc. Rev. 43, 6062–6096 (2014). https://doi.org/10.1039/c4cs00101j

    Article  Google Scholar 

  19. Yu. Li, Yu. Wang, W. Fan, and D. Sun, ‘‘Flexible metal–organic frameworks for gas storage and separation,’’ Dalton Trans. 51, 4608–4618 (2022). https://doi.org/10.1039/d1dt03842g

    Article  Google Scholar 

  20. S. Yuan, L. Zou, H. Li, Yi. Chen, J. Qin, Q. Zhang, W. Lu, M. B. Hall, and H. Zhou, ‘‘Flexible zirconium metal–organic frameworks as bioinspired switchable catalysts,’’ Angew. Chem. 128, 10934–10938 (2016). https://doi.org/10.1002/ange.201604313

    Article  ADS  Google Scholar 

  21. V. Bon, N. Klein, I. Senkovska, A. Heerwig, J. Getzschmann, D. Wallacher, I. Zizak, M. Brzhezinskaya, U. Mueller, and S. Kaskel, ‘‘Exceptional adsorption-induced cluster and network deformation in the flexible metal–organic framework DUT-8(Ni) observed by in situ X-ray diffraction and EXAFS,’’ Phys. Chem. Chem. Phys. 17, 17471–17479 (2015). https://doi.org/10.1039/c5cp02180d

    Article  Google Scholar 

  22. A. Krylov, A. Vtyurin, P. Petkov, I. Senkovska, M. Maliuta, V. Bon, T. Heine, S. Kaskel, and E. Slyusareva, ‘‘Raman spectroscopy studies of the terahertz vibrational modes of a DUT-8 (Ni) metal–organic framework,’’ Phys. Chem. Chem. Phys. 19, 32099–32104 (2017). https://doi.org/10.1039/c7cp06225g

    Article  Google Scholar 

  23. L. Abylgazina, I. Senkovska, R. Engemann, S. Ehrling, T. E. Gorelik, N. Kavoosi, U. Kaiser, and S. Kaskel, ‘‘Impact of crystal size and morphology on switchability characteristics in pillared-layer metal-organic framework DUT-8(Ni),’’ Front. Chem. 9, 293 (2021). https://doi.org/10.3389/fchem.2021.674566

    Article  ADS  Google Scholar 

  24. S. Ehrling, I. Senkovska, A. Efimova, V. Bon, L. Abylgazina, P. Petkov, J. D. Evans, A. Gamal Attallah, M. T. Wharmby, M. Roslova, Z. Huang, H. Tanaka, A. Wagner, P. Schmidt, and S. Kaskel, ‘‘Temperature driven transformation of the flexible metal–organic framework DUT-8(Ni),’’ Chem.–A Eur. J. 28, e202201281 (2022). https://doi.org/10.1002/chem.202201281

  25. M. Mendt, F. Gutt, N. Kavoosi, V. Bon, I. Senkovska, S. Kaskel, and A. Pöppl, ‘‘EPR insights into switchable and rigid derivatives of the metal–organic framework DUT-8(Ni) by NO adsorption,’’ J. Phys. Chem. C 120, 14246–14259 (2016). https://doi.org/10.1021/acs.jpcc.6b04984

    Article  Google Scholar 

  26. S. Ehrling, I. Senkovska, V. Bon, J. D. Evans, P. Petkov, Yu. Krupskaya, V. Kataev, T. Wulf, A. Krylov, A. Vtyurin, S. Krylova, S. Adichtchev, E. Slyusareva, M. S. Weiss, B. Büchner, T. Heine, and S. Kaskel, ‘‘Crystal size versus paddle wheel deformability: Selective gated adsorption transitions of the switchable metal–organic frameworks DUT-8(Co) and DUT-8(Ni),’’ J. Mater. Chem. A 7, 21459–21475 (2019). https://doi.org/10.1039/c9ta06781g

    Article  Google Scholar 

  27. A. Krylov, I. Yushina, E. Slyusareva, S. Krylova, A. Vtyurin, S. Kaskel, and I. Senkovska, ‘‘Structural phase transitions in flexible DUT-8(Ni) under high hydrostatic pressure,’’ Phys. Chem. Chem. Phys. 24, 3788–3798 (2022). https://doi.org/10.1039/d1cp05021d

    Article  Google Scholar 

  28. H. Miura, V. Bon, I. Senkovska, S. Ehrling, N. Bönisch, G. Mäder, S. Grünzner, A. Khadiev, D. Novikov, K. Maity, A. Richter, and S. Kaskel, ‘‘Spatiotemporal design of the metal–organic framework DUT-8 (M),’’ Adv. Mater. 35, 2207741 (2023). https://doi.org/10.1002/adma.202207741

  29. Yi. Chang, S. He, M. Sun, A. **ao, J. Zhao, L. Ma, and W. Qiu, ‘‘Angle-resolved intensity of in-axis/off-axis polarized micro-Raman spectroscopy for monocrystalline silicon,’’ J. Spectrosc. 2021, 2860007 (2021). https://doi.org/10.1155/2021/2860007

  30. L. Nafie, P. Stein, B. Fanconi, and W. L. Peticolas, ‘‘Angular dependence of Raman scattering intensity,’’ J. Chem. Phys. 52, 1584–1588 (1970). https://doi.org/10.1063/1.1673171

    Article  ADS  Google Scholar 

  31. Yu. Choi, K. Kim, S. Ye. Lim, J. Kim, J. M. Park, J. H. Kim, Z. Lee, and H. Cheong, ‘‘Complete determination of the crystallographic orientation of ReX\({}_{2}\) (X = S, Se) by polarized Raman spectroscopy,’’ Nanoscale Horiz. 5, 308–315 (2020). https://doi.org/10.1039/c9nh00487d

    Article  ADS  Google Scholar 

  32. R. Dovesi, A. Erba, R. Orlando, C. M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rérat, S. Casassa, J. Baima, S. Salustro, and B. Kirtman, ‘‘Quantum-mechanical condensed matter simulations with CRYSTAL,’’ WIREs Comput. Mol. Sci. 8, e1360 (2018). https://doi.org/10.1002/wcms.1360

Download references

ACKNOWLEDGMENTS

We are grateful to Dr. Irena Senkovska for the presented DUT-8 (Ni, Co) samples. The experiments were performed in the Common Use Center of the Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences.

Funding

This work was supported by the Russian Foundation for Basic Research (Russian Center of Scientific Information), project no. 21-52-12018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Krylov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Translated by A. Nikol’skii

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slyusarenko, N.V., Yushina, I.D., Slyusareva, E.A. et al. Determination of the Pore Direction in a Crystalline Metal-Organic Framework by Raman Spectroscopy and Periodic Calculations Based on the Electron Density Functional Theory. Optoelectron.Instrument.Proc. 59, 693–702 (2023). https://doi.org/10.3103/S8756699023060134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699023060134

Keywords:

Navigation