Log in

Van der Waals Heteroepitaxial Growth of Layered SnSe\({}_{\mathbf{2}}\) on Surfaces Si(111) and Bi\({}_{\mathbf{2}}\)Se\({}_{\mathbf{3}}\)(0001)

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

Layered SnSe\({}_{2}\) films of nearly 50 and 30 nm in thickness were grown on Si(111) and Bi\({}_{2}\)Se\({}_{3}\)(0001) substrates, respectively, with the use of in situ reflection electron microscopy. In both cases, the growth of films occurred by a multilayer mechanism with the formation of pronounced hills. The height of atomic steps was measured by atomic force microscopy (AFM) as 0.6 nm, which corresponded to the SnSe\({}_{2}\) layer thickness. The surface ex situ AFM image of SnSe\({}_{2}\) grown on a Si(111) substrate demonstrated a high concentration of screw dislocations in the film (\(\sim\)12 \(\mu\)m\({}^{-2}\)) and the existence of domains with a triangular faceting of steps, which had three types of orientation with respect to the substrate. The growth of a SnSe\({}_{2}\) film on single crystal Bi\({}_{2}\)Se\({}_{3}\) surface(0001) was revealed to occur with the formation of hills, which had a hexangular faceting and were identically oriented with respect to the substrate. The hills were formed by the multilayer mechanism both in the regions, where screw dislocations cropped out, and due to the periodic nucleation of 2D islands on the highest terraces, which attained 1 \(\mu\)m in size. Using Raman scattering, the films on both substrates were shown to have the spectra typical for the 1T-SnSe\({}_{2}\) phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. S. Vishwanath, X. Liu, S. Rouvimov, L. Basile, N. Lu, A. Azcatl, K. Magno, R. M. Wallace, M. Kim, J.-C. Idrobo, J. K. Furdyna, D. Jena, and H. G. **ng, ‘‘Controllable growth of layered selenide and telluride heterostructures and superlattices using molecular beam epitaxy,’’ J. Mater. Res. 31, 900–910 (2016). https://doi.org/10.1557/jmr.2015.374

    Article  ADS  Google Scholar 

  2. X. Li, L. Tao, Z. Chen, H. Fang, X. Li, X. Wang, J.-B. Xu, and H. Zhu, ‘‘Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics,’’ Appl. Phys. Rev. 4, 021306 (2017). https://doi.org/10.1063/1.4983646

    Article  ADS  Google Scholar 

  3. Z. Yang and J. Hao, ‘‘Recent progress in 2D layered III–VI semiconductors and their heterostructures for optoelectronic device applications,’’ Adv. Mater. Technol. 4, 1900108 (2019). https://doi.org/10.1002/admt.201900108

    Article  Google Scholar 

  4. K. E. Aretouli, D. Tsoutsou, P. Tsipas, J. Marquez-Velasco, S. A. Giamini, N. Kelaidis, V. Psycharis, and A. Dimoulas, ‘‘Epitaxial 2D SnSe\({}_{2}\)/2D WSe\({}_{2}\) van der Waals heterostructures,’’ ACS Appl. Mater. Interfaces 8, 23222–23229 (2016). https://doi.org/10.1021/acsami.6b02933

    Article  Google Scholar 

  5. Z. Huang, W. Zhang, and W. Zhang, ‘‘Computational search for two-dimensional MX\({}_{2}\) semiconductors with possible high electron mobility at room temperature,’’ Materials 9, 716 (2016). https://doi.org/10.3390/ma9090716

    Article  ADS  Google Scholar 

  6. G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, ‘‘Electronics based on two-dimensional materials,’’ Nat. Nanotechnol. 9, 768–779 (2014). https://doi.org/10.1038/nnano.2014.207

    Article  ADS  Google Scholar 

  7. S. A. Ponomarev, D. I. Rogilo, A. S. Petrov, D. V. Sheglov, and A. V. Latyshev, ‘‘Etching kinetics of Si(111) surface by selenium molecular beam,’’ Optoelectron., Instrum. Data Process. 56, 449–455 (2020). https://doi.org/10.3103/S8756699020050088

    Article  ADS  Google Scholar 

  8. J. Wu, Z. Hu, Z. **, S. Lei, H. Guo, K. Chatterjee, J. Zhang, Yi. Yang, B. Li, Ya. Liu, J. Lai, R. Vajtai, B. Yakobson, M. Tang, J. Lou, and P. M. Ajayan, ‘‘Spiral growth of SnSe\({}_{2}\) crystals by chemical vapor deposition,’’ Adv. Mater. Interfaces 3, 1600383 (2016). https://doi.org/10.1002/admi.201600383

    Article  Google Scholar 

  9. A. V. Matetskiy, I. A. Kibirev, A. V. Zotov, and A. A. Saranin, ‘‘Growth and characterization of van-der-Waals heterostuctures formed by the topological insulator Bi\({}_{2}\)Se\({}_{3}\) and the trivial insulator SnSe\({}_{2}\),’’ Appl. Phys. Lett. 109, 021606 (2016). https://doi.org/10.1063/1.4958936

    Article  ADS  Google Scholar 

  10. Yo. Woon Park, S.-K. Jerng, J. H. Jeon, S. B. Roy, K. Akbar, J. Kim, Yu. Sim, M.-J. Seong, J. H. Kim, and Z. Lee, ‘‘Molecular beam epitaxy of large-area SnSe\({}_{2}\) with monolayer thickness fluctuation,’’ 2D Mater. 4, 014006 (2016). https://doi.org/10.1088/2053-1583/aa51a2

  11. D. I. Rogilo, S. V. Sitnikov, E. E. Rodyakina, A. S. Petrov, S. A. Ponomarev, D. V. Sheglov, L. I. Fedina, and A. V. Latyshev, ‘‘In situ reflection electron microscopy for the analysis of silicon surface processes: Sublimation, electromigration, and adsorption of impurity atoms,’’ Crystallogr. Rep. 66, 570–580 (2021). https://doi.org/10.1134/S1063774521040192

    Article  ADS  Google Scholar 

  12. A. C. Papageorgopoulos and M. Kamaratos, ‘‘A study of the restoration of Se/Si(111)-\(7\times 7\) reconstructed surfaces: Preservation of the bulk-terminated state,’’ Surf. Sci. 504, L191–L195 (2002). https://doi.org/10.1016/S0039-6028(02)01096-8

    Article  ADS  Google Scholar 

  13. D. I. Rogilo, L. I. Fedina, S. A. Ponomarev, D. V. Sheglov, and A. V. Latyshev, ‘‘Etching of step-bunched Si(111) surface by Se molecular beam observed by in situ REM,’’ J. Cryst. Growth 529, 125273 (2020). https://doi.org/10.1016/j.jcrysgro.2019.125273

    Article  Google Scholar 

  14. D. Rogilo, S. Sitnikov, S. Ponomarev, D. Sheglov, L. Fedina, and A. Latyshev, ‘‘Structural and morphological instabilities of the Si(111)-\(7\times 7\) surface during silicon growth and etching by oxygen and selenium,’’ Appl. Surf. Sci. 540, 148269 (2021). https://doi.org/10.1016/j.apsusc.2020.148269

    Article  Google Scholar 

  15. Q. Zhang, M. (O.) Li, E. B. Lochocki, S. Vishwanath, X. Liu, R. Yan, H.-H. Lien, M. Dobrowolska, J. Furdyna, K. M. Shen, G. Cheng, A. R. Hight Walker, D. J. Gundlach, H. G. **ng, and N. V. Nguyen, ‘‘Band offset and electron affinity of MBE-grown SnSe\({}_{2}\),’’ Appl. Phys. Lett. 112, 042108 (2018). https://doi.org/10.1063/1.5016183

    Article  ADS  Google Scholar 

  16. S. Ponomarev, D. Rogilo, A. Mironov, D. Sheglov, and A. Latyshev, ‘‘Thermal hysteresis in the resistance of In\({}_{2}\)Se\({}_{3}\) film on Si(111) surface,’’ in IEEE 22nd Int. Conf. of Young Professionals in Electron Devices and Materials (EDM), Souzga, the Altai Republic, 2021 (IEEE, 2021), vol. 18, pp. 50–53. https://doi.org/10.1109/EDM52169.2021.9507592

  17. A. V. Zotov, A. A. Saranin, O. Kubo, T. Harada, M. Katayama, and K. Oura, ‘‘Quantitative STM investigation of the phase formation in submonolayer In/Si(111) system,’’ Appl. Surf. Sci. 159160, 237–242 (2000). https://doi.org/10.1016/S0169-4332(00)00156-2

    Article  ADS  Google Scholar 

  18. S. Schreyeck, N. V. Tarakina, G. Karczewski, C. Schumacher, T. Borzenko, C. Brüne, H. Buhmann, C. Gould, K. Brunner, and L. W. Molenkamp, ‘‘Molecular beam epitaxy of high structural quality Bi\({}_{2}\)Se\({}_{3}\) on lattice matched InP(111) substrates,’’ Appl. Phys. Lett. 102, 041914 (2013). https://doi.org/10.1063/1.4789775

    Article  ADS  Google Scholar 

  19. F. Liu, P. Parajuli, R. Rao, P. C. Wei, A. Karunarathne, S. Bhattacharya, R. Podila, J. He, B. Maruyama, G. Priyadarshan, J. R. Gladden, Y. Y. Chen, and A. M. Rao, ‘‘Phonon anharmonicity in single-crystalline SnSe,’’ Phys. Rev. B 98, 224309 (2018). https://doi.org/10.1103/PhysRevB.98.224309

    Article  ADS  Google Scholar 

  20. S. Luo, X. Qi, H. Yao, X. Ren, Q. Chen, and J. Zhong, ‘‘Temperature-dependent Raman responses of the vapor-deposited tin selenide ultrathin flakes,’’ J. Phys. Chem. C 121, 4674–4679 (2017). https://doi.org/10.1021/acs.jpcc.6b12059

    Article  Google Scholar 

  21. X. Zhou, L. Gan, W. Tian, Q. Zhang, Sh. **, H. Li, Yo. Bando, D. Golberg, and T. Zhai, ‘‘Ultrathin SnSe\({}_{2}\) flakes grown by chemical vapor deposition for high-performance photodetectors,’’ Adv. Mater. 27, 8035–8041 (2015). https://doi.org/10.1002/adma.201503873

    Article  Google Scholar 

  22. S. A. Ponomarev, D. I. Rogilo, N. N. Kurus, L. S. Basalaeva, K. A. Kokh, A. G. Milekhin, D. V. Sheglov, and A. V. Latyshev, ‘‘In situ reflection electron microscopy for investigation of surface processes on Bi\({}_{2}\)Se\({}_{3}\)(0001),’’ J. Phys.: Conf. Ser. 1984, 012016 (2021). https://doi.org/10.1088/1742-6596/1984/1/012016

    Article  Google Scholar 

  23. X. Chen, H. D. Zhou, A. Kiswandhi, I. Miotkowski, Y. P. Chen, P. A. Sharma, A. L. Lima Sharma, M. A. Hekmaty, D. Smirnov, and Z. Jiang, ‘‘Thermal expansion coefficients of Bi\({}_{2}\)Se\({}_{3}\) and Sb\({}_{2}\)Te\({}_{3}\) crystals from 10 K to 270 K,’’ Appl. Phys. Lett. 99, 261912 (2011). https://doi.org/10.1063/1.3672198

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was carried out on the equipment of the Shared Facilities Center ‘‘Nanostructures’’ in the Rzhanov Institute of Semiconductors (Siberian Branch, Russian Academy of Sciences).

Funding

The experiments on surface Si(111) were supported by the state assignment (project no. FWGW-2021-0007), and the experiments on surface Bi\({}_{2}\)Se\({}_{3}\)(0001) were sponsored by the Russian Science Foundation (grant no. 22-72-10124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Ponomarev.

Additional information

Translated by E. Glushachenkova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomarev, S.A., Zakhozhev, K.E., Rogilo, D.I. et al. Van der Waals Heteroepitaxial Growth of Layered SnSe\({}_{\mathbf{2}}\) on Surfaces Si(111) and Bi\({}_{\mathbf{2}}\)Se\({}_{\mathbf{3}}\)(0001). Optoelectron.Instrument.Proc. 58, 564–570 (2022). https://doi.org/10.3103/S8756699022060097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699022060097

Keywords:

Navigation