Log in

Structural and Spectral Signatures of Alkali Metal Ions in Water Clusters

  • STRUCTURING AND PHASE TRANSITIONS IN AQUEOUS SOLUTIONS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Analysis of the results of nonempirical simulations of Met+(H2O)n clusters with Met = Li, Na, and K, and n = 20–55 carried out at the density functional level with B3LYP exchange-correlation functional and extended double-zeta basis sets revealed the prevailing structure motifs of the aqua complexes of alkali metal ions and their fingerprints in the infrared absorption spectra in the range of 2000–4000 cm–1. The hydration structures of the ions are found to be predetermined by the balance between the conjugated H-bonded rings and extended ordered H-bonded sequences. The extension of the latter is shown to decrease with an increase in the effective radius of the ion, which is reflected in the stronger localization of the coupling of OH oscillators within the homodromic structural rings and the respective shift in the characteristic frequencies within the OH stretching domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. G. W. Neilson and J. E. Enderby, “Chapter 7. Neutron and X-ray diffraction studies of concentrated aqueous electrolyte solutions,” Annu. Rep. Prog. Chem. Sect. C: Phys. Chem. 76, 185–220 (1979). https://doi.org/10.1039/PC9797600185

  2. I. M. Shapovalov, I. V. Radchenko, and M. K. Lesovitskaya, “X-ray investigation of aqueous sulfate solutions,” J. Struct. Chem. 4 (1), 8–11 (1963). https://doi.org/10.1007/BF02237512

    Article  Google Scholar 

  3. A. H. Narten, F. Vaslow, and H. A. Levy, “Diffraction pattern and structure of aqueous lithium chloride solutions,” J. Chem. Phys. 58 (11), 5017–5023 (1973). https://doi.org/10.1063/1.1679089

    Article  ADS  Google Scholar 

  4. G. W. Brady, “Structure in ionic solutions. II,” J. Chem. Phys. 28 (3), 464–469 (1958). https://doi.org/10.1063/1.1744159

    Article  ADS  Google Scholar 

  5. G. Licheri, G. Piccalugga, and G. Pinna, “X-ray diffraction studies of alkali halide solutions,” J. Appl. Cryst. 6, 392–395 (1973). https://doi.org/10.1107/S0021889873008939

    Article  Google Scholar 

  6. I. V. Radchenko and A. I. Ryss, “X-ray diffraction study of aqueous solutions of ammonium and lithium tetrafluoroborates,” J. Struct. Chem. 6 (2), 171–175 (1965). https://doi.org/10.1007/BF00745934

    Article  Google Scholar 

  7. G. Licheri, G. Piccalugga, and G. Pinna, “X-ray diffraction study of LiBr aqueous solutions,” Chem. Phys. Lett. 35 (1), 119–123 (1975). https://doi.org/10.1016/0009-2614(75)85600-4

    Article  ADS  Google Scholar 

  8. A. Tongraar, K. R. Liedl, and B. M. Rode, “The hydration shell structure of Li+ investigated by Born–Oppenheimer ab initio QM/MM dynamics,” Chem. Phys. Lett. 286 (1–2), 56–64 (1998). https://doi.org/10.1016/S0009-2614(98)00064-5

  9. J. R. Newsome, G. W. Neilson, and J. E. Ebderby, “Lithium ions in aqueous solution,” J. Phys. C: Solid State Phys. 13 (32), L923–L926 (1980). https://doi.org/10.1088/0022-3719/13/32/001

    Article  ADS  Google Scholar 

  10. I. Howell, and G. W. Neilson, “Li+ hydration in concentrated aqueous solution,” J. Phys.: Condens. Matter 8 (25), 4455–4464 (1996). https://doi.org/10.1088/0953-8984/8/25/004

    Article  ADS  Google Scholar 

  11. P. E. Mason, S. Ansell, G. W. Neilson, and S. B. Rempe, “Neutron scattering studies of the hydration structure of Li+,” J. Phys. Chem. B 119 (5), 2003–2009 (2015). https://doi.org/10.1021/jp511508n

    Article  Google Scholar 

  12. N. T. Skipper and G. W. Neilson, “X-ray and neutron diffraction studies on concentrated aqueous solutions of sodium nitrate and silver nitrate,” J. Phys.: Condens. Matter 1 (26), 4141–4154 (1989). https://doi.org/10.1088/0953-8984/1/26/010

    Article  ADS  Google Scholar 

  13. P. E. Mason, S. Ansell, and G. W. Neilson, “Neutron diffraction studies of electrolytes in null water: A direct determination of the first hydration zone of ions,” J. Phys.: Condens. Matter 18 (37), 8437–8448 (2006). https://doi.org/10.1088/0953-8984/18/37/004

    Article  ADS  Google Scholar 

  14. M. Galib, M. D. Baer, L. B. Skinner, C. J. Mundy, T. Huthwelker, G. K. Schenter, C. J. Benmore, N. Govind, and J. L. Fulton, “Revisiting the hydration structure of aqueous Na+,” J. Chem. Phys. 146 (8), 084504 (2017). https://doi.org/10.1063/1.4975608

    Article  ADS  Google Scholar 

  15. H. Ohtaki and T. Radnai, “Structure and dynamics of hydrated ions,” Chem. Rev. 93 (3), 1157–1204 (1993). https://doi.org/10.1021/cr00019a014

    Article  Google Scholar 

  16. K. Hayamizu, Y. Chiba, and T. Haishi, “Dynamic ionic radius of alkali metal ions in aqueous solution: A pulsed-field gradient NMR study,” RSC Adv. 11 (33), 20252–20257 (2021). https://doi.org/10.1039/D1RA02301B

    Article  ADS  Google Scholar 

  17. D. Spångberg and K. Hermansson, “Many-body potentials for aqueous Li+, Na+, Mg2+, and Al3+: Comparison of effective three-body potentials and polarizable models,” J. Chem. Phys. 120 (10), 4829–4843 (2004). https://doi.org/10.1063/1.1641191

    Article  ADS  Google Scholar 

  18. H. H. Loeffler, A. M. Mohammed, Y. Inada, and Sh. Funahashi, “Lithium(I) ion hydration: A QM/MM-MD study,” Chem. Phys. Lett. 379 (5–6), 452–457 (2003). https://doi.org/10.1016/j.cplett.2003.08.077

  19. H. H. Loeffle and B. M. Rode, “The hydration structure of the lithium ion,” J. Chem. Phys. 117 (1), 110–117 (2002). https://doi.org/10.1063/1.1480875

    Article  ADS  Google Scholar 

  20. J. L. Llanio-Trujillo, J. M. C. Marques, and F. B. Pereira, “New insights on lithium-cation microsolvation by solvents forming hydrogen-bonds: Water versus methanol,” Comput. Theor. Chem. 1021, 124–134 (2013). https://doi.org/10.1016/j.comptc.2013.06.043

    Article  Google Scholar 

  21. H. Y. Liu, Y. Q. Zhou, F. Y. Zhu, W. Q. Zhang, G. G. Wang, Zh. F. **g, and Ch. H. Fang, “Micro hydration structure of aqueous Li+ by DFT and CPMD,” Eur. Phys. J. D 74 (1), 2 (2020). https://doi.org/10.1140/epjd/e2019-100233-2

    Article  ADS  Google Scholar 

  22. P. Sripa, A. Tongraar, and T. Kerdcharoen, “Structure and dynamics of the Li+ hydrates: A comparative study of conventional QM/MM and ONIOM-XS MD simulations,” J. Mol. Liq. 208, 280–285 (2015). https://doi.org/10.1016/j.molliq.2015.04.054

    Article  Google Scholar 

  23. C. N. Rowley and B. Roux, “The solvation structure of Na+ and K+ in liquid water determined from high level ab initio molecular dynamics simulations,” J. Chem. Theory Comput. 8 (10), 3526–2535 (2012). https://doi.org/10.1021/ct300091w

    Article  Google Scholar 

  24. L. Degrève, V. M. de Pauli, and M. A. Duarte, “Simulation study of the role and structure of monoatomic ions multiple hydration shells,” J. Chem. Phys. 106 (2), 655–665 (1997). https://doi.org/10.1063/1.473403

    Article  ADS  Google Scholar 

  25. Yu. V. Novakovskaya, “Conjugation in hydrogen-bonded systems,” Struct. Chem. 23 (4), 1253–1266 (2012). https://doi.org/10.1007/s11224-012-0029-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Novakovskaya.

Ethics declarations

The author declares that she has no conflicts of interest.

Additional information

The text was submitted by the author in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novakovskaya, Y.V. Structural and Spectral Signatures of Alkali Metal Ions in Water Clusters. Phys. Wave Phen. 31, 141–150 (2023). https://doi.org/10.3103/S1541308X23030068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X23030068

Keywords:

Navigation