Log in

Impact of Pressure on Surface Roughness and Kerf Characteristics Using Low Pressure Abrasive Water Jet Cutting

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Abrasive water jet (AWJ) cutting is an emerging material processing technology with significant advantages, such as no thermal deformation, high processing versatility, high flexibility, and low cutting force. It is used in various applications including machining, cleaning, surface preparation, and material cutting. The main concerns during the AWJ cutting process are the surface roughness and the kerf geometry. This study aimed to successfully predict the surface roughness and the kerf geometry during low pressure AWJ machining to cut metal sheets at low and high water pressures when cutting the stainless steel and copper specimens. The experimental results show that a low water pressure indicates fewer variations between the surface roughness and the kerf angle. At various pressures, the roughness values ranged from 3.087 to 4.817 µm. A regression model was developed to predict the surface roughness and the kerf angle. As a result, the effect of water pressure can only increase the kinetic energy but cannot affect other processing parameters separately. Scanning electron microscopy revealed micro-cracks during the AWJ cutting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

DATA AVAILABILITY

Research data supporting this publication are available on request.

REFERENCES

  1. Yuvaraj, N. and Pradeep Kumar, M., Multiresponse optimization of abrasive water jet cutting process parameters using TOPSIS approach, Mater. Manuf. Process., 2015, vol. 30, no. 7, p. 882.

    Article  Google Scholar 

  2. Alberdi, A., Suárez, A., Artaza, T., Escobar-Palafox, G.A., et al., Composite cutting with abrasive water jet, Procedia Eng., 2013, vol. 63, p. 421.

    Article  Google Scholar 

  3. Balaji, D.S. and Jeyapoovan, T., Multi-objective optimization in abrasive water jet peening on AA6063 alloy, Mater. Today Proc., 2021, vol. 45, p. 1928.

    Article  Google Scholar 

  4. Chen, F.L. and Siores, E., The effect of cutting jet variation on surface striation formation in abrasive water jet cutting, J. Mater. Process. Technol., 2003, vol. 135, no. 1, p. 1. https://doi.org/10.1016/S0924-0136(01)00579-9

    Article  Google Scholar 

  5. Löschner, P., Jarosz, K., and Niesłony, P., Investigation of the effect of cutting speed on surface quality in abrasive water jet cutting of 316L stainless steel, Procedia Eng., 2016, vol. 149, p. 276.

    Article  Google Scholar 

  6. Anand, U. and Katz, J., Prevention of nozzle wear in abrasive water suspension jets (AWSJ) using porous lubricated nozzles, J. Trib., 2003, vol. 125, no. 1, p. 168.

    Article  Google Scholar 

  7. Chillman, A., Ramulu, M., and Hashish, M., Waterjet and water-air jet surface processing of a titanium alloy: A parametric evaluation, J. Manuf. Sci. Eng., 2010, vol. 132, no. 1, p. 011012. https://doi.org/10.1115/1.4000837

    Article  Google Scholar 

  8. Bilbao Guillerna, A., Axinte, D. and Billingham, J., The linear inverse problem in energy beam processing with an application to abrasive waterjet machining, Int. J. Mach. Tools Manuf., 2015, vol. 99, p. 34. https://doi.org/10.1016/j.ijmachtools.2015.09.006

    Article  Google Scholar 

  9. Natarajan, Y., Murugesan, P.K., Mohan, M. and Liyakath Ali Khan, S.A., Abrasive water jet machining process: A state of art of review, J. Manuf. Process., 2020, vol. 49, p. 271. .https://doi.org/10.1016/j.jmapro.2019.11.030

    Article  Google Scholar 

  10. Muruganandhan, R., Mugilvalavan, M., Thirumavalavan, K., and Yuvaraj, N., Investigation of water jet peening process parameters on AL6061-T6, Surf. Eng., 2018, vol. 34, no. 4, p. 330.

    Article  Google Scholar 

  11. Cashman, M., Ramirez, S., Soo, S., Shepherd, D., et al., Abrasive water jet cutting (AWJC) of Co-Cr-Mo alloy investment castings in the medical device industry, in Proceedings of the Water Jet Technology Association-Industrial and Municipal Cleaning Association (WJTA-IMCA) Conference and Expo 2013, 2013, p. 1.

  12. Aydin, G., Karakurt, I., and Aydiner, K., An investigation on surface roughness of granite machined by abrasive waterjet, Bull. Mater. Sci., 2011, vol. 34, no. 4, p. 985.

    Article  Google Scholar 

  13. Akkurt, A., The effect of cutting process on surface microstructure and hardness of pure and Al 6061 aluminium alloy, Eng. Sci. Technol. Int. J., 2015, vol. 18, no. 3, p. 303. https://doi.org/10.1016/j.jestch.2014.07.004

    Article  Google Scholar 

  14. Gardner, L., The use of stainless steel in structures, Prog. Struct. Eng. Mater., 2005, vol. 7, no. 2, p. 45. https://doi.org/10.1002/pse.190

    Article  Google Scholar 

  15. Shih, C.-C., Shih, C.-M., Su, Y.-Y., Su, L.H.J., et al., Effect of surface oxide properties on corrosion resistance of 316L stainless steel for biomedical applications, Corros. Sci., 2004, vol. 46, no. 2, p. 427. https://doi.org/10.1016/S0010-938X(03)00148-3

    Article  Google Scholar 

  16. Smith, A.F., The diffusion of chromium in type 316 stainless steel, Met. Sci., 1975, vol. 9, no. 1, p. 375. https://doi.org/10.1179/030634575790444270

    Article  Google Scholar 

  17. Jiang, W., Luo, Y., Wang, H. and Wang, B.Y., Effect of impact pressure on reducing the weld residual stress by water jet peening in repair weld to 304 stainless steel clad plate, J. Press. Vessel Technol., 2015, vol. 137, no. 3.

  18. Qutaba, S., Azhari, A., Asmelash, M., Haider, M., et al. Development of fiber metal laminate composite with different glass fiber GSM, Mater. Today Proc., 2023. https://doi.org/10.1016/j.matpr.2023.08.179

    Book  Google Scholar 

  19. Moura, V.S., Lima, L.D., Pardal, J.M., Kina, A.Y., et al., Influence of microstructure on the corrosion resistance of the duplex stainless steel UNS S31803, Mater. Charact., 2008, vol. 59, no. 8, p. 1127. https://doi.org/10.1016/j.matchar.2007.09.002

    Article  Google Scholar 

  20. Syed, M.H., Qutaba, S., Syed, L., Zahari, M.A.K.M., et al., Greenly prepared antimicrobial cotton fabrics using bioactive agents from Cupressaceae pods, Surf. Innov., 2022, vol. 40, no. 40, p. 1. https://doi.org/10.1680/jsuin.22.01073

    Article  Google Scholar 

  21. Alami, A.H., Allagui, A. and Alawadhi, H., Microstructural and optical studies of CuO thin films prepared by chemical ageing of copper substrate in alkaline ammonia solution, J. Alloys Compd., 2014, vol. 617, p. 542.

    Article  Google Scholar 

  22. Maruyama, T., Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate, Sol. Energy Mater. Sol. Cells, 1998, vol. 56, no. 1, p. 85.

    Article  Google Scholar 

  23. Hlaváč, L.M., Kocich, R. Gembalová, L., Jonšta, P., et al., AWJ cutting of copper processed by ECAP, Int. J. Adv. Manuf. Technol., 2016, vol. 86, no. 1, p. 885.

    Article  Google Scholar 

  24. Kwee, I., Psyk, V. and Faes, K., Effect of the welding parameters on the structural and mechanical properties of aluminium and copper sheet joints by electromagnetic pulse welding, World J. Eng. Technol., 2016, vol. 4, no. 4, p. 538.

    Article  Google Scholar 

  25. Qutaba, S., Asmelash, M., Saptaji, K. and Azhari, A., A review on peening processes and its effect on surfaces, Int. J. Adv. Manuf. Technol., 2022, vol. 120, nos. 7–8, p. 4233. https://doi.org/10.1007/s00170-022-09021-6

    Article  Google Scholar 

  26. Qutaba, S. and Zhaolingb, L., Evolution of eco-friendly antimicrobial finishes extracted from citrus fruits peel for textile cotton fabric with furtherance domestic washing, Int. J. Sci. Eng. Res., 2017, vol. 8, no. 10, p. 973.

    Google Scholar 

  27. Yang, J., Li, Y., Wang, F., Zang, Z., et al., New application of stainless steel, J. Iron Steel Res. Int., 2006, vol. 13, no. 1, p. 62. https://doi.org/10.1016/S1006-706X(06)60028-9

    Article  Google Scholar 

  28. Akkurt, A., Surface properties of the cut face obtained by different cutting methods from AISI 304 stainless steel materials, Indian J. Eng. Mater. Sci., 2009, vol. 16, no. 6, p. 373.

    Google Scholar 

  29. Hilbert, L.R., Bagge-Ravn, D., Kold, J., and Gram, L., Influence of surface roughness of stainless steel on microbial adhesion and corrosion resistance, Int. Biodeterior. Biodegrad., 2003, vol. 52, no. 3, p. 175. https://doi.org/10.1016/S0964-8305(03)00104-5

    Article  Google Scholar 

  30. Chen, X.H., Lu, J., Lu, L., and Lu, K., Tensile properties of a nanocrystalline 316L austenitic stainless steel, Scr. Mater., 2005, vol. 52, no. 10, p. 1039. https://doi.org/10.1016/j.scriptamat.2005.01.023

    Article  Google Scholar 

  31. Azmir, M.A. and Ahsan, A.K., A study of abrasive water jet machining process on glass/epoxy composite laminate, J. Mater. Process. Technol., 2009, vol. 209, no. 20, p. 6168.

    Article  Google Scholar 

  32. Qutaba, S., Asmelash, M., and Azhari, A., Investigation on the multiple plies structure of aluminum–lithium alloy and glass fiber composite with respect to deformation failure, Mater. Res. Express, 2023, vol. 10, no. 1, p. 016507. https://doi.org/10.1088/2053-1591/acb124

    Article  Google Scholar 

  33. Azmir, M.A., Ahsan, A.K., and Rahmah, A., Effect of abrasive water jet machining parameters on aramid fibre reinforced plastics composite, Int. J. Mater. Form., 2009, vol. 2, no. 1, p. 37.

    Article  Google Scholar 

  34. Kovacevic, R., Surface texture in abrasive waterjet cutting, J. Manuf. Syst., 1991, vol. 10, no. 1, p. 32. https://doi.org/10.1016/0278-6125(91)90045-4

    Article  Google Scholar 

  35. Yao, S.-L., Wang G.-Yu, Yu. H., Wang, J., et al., Influence of submerged micro-abrasive waterjet peening on surface integrity and fatigue performance of TA19 titanium alloy, Int. J. Fatigue, 2022, vol. 164, p. 107076. https://doi.org/10.1016/j.ijfatigue.2022.107076

    Article  Google Scholar 

  36. Azhari, A., Schindler, C., Godard, C., Gibmeier, J., et al., Effect of multiple passes treatment in waterjet peening on fatigue performance, Appl. Surf. Sci., 2016, vol. 388, p. 468.

    Article  Google Scholar 

  37. Mardi, K.B., Dixit A.R., Pramanik, A., Hvizdos, P., et al., Surface topography analysis of Mg-based composites with different nanoparticle contents disintegrated using abrasive water jet, Materials (Basel), 2021, vol. 14, no. 19, p. 5471. https://doi.org/10.3390/ma14195471

    Article  Google Scholar 

  38. Srivastava, A.K., Nag, A., Dixit, A.R., Tiwari, S., et al., Parametric study during abrasive water jet turning of hybrid metal matrix composite, in Advances in Manufacturing Engineering and Materials: Proceedings of the International Conference on Manufacturing Engineering and Materials (ICMEM 2018), June 18–22, 2018, Nový Smokovec, Slovakia, 2019, p. 72.

  39. Iqbal, A., Dar, N.U., and Hussain, G., Optimization of abrasive water jet cutting of ductile materials, J. Wuhan Univ. Technol. Sci. Ed., 2011, vol. 26, no. 1, p. 88. https://doi.org/10.1007/s11595-011-0174-8

    Article  Google Scholar 

  40. Lehocka, D., Klich, J., Foldyna, J., Hloch, S., et al., Copper alloys disintegration using pulsating water jet, Measurement, 2016, vol. 82, p. 375. https://doi.org/10.1016/j.measurement.2016.01.014

    Article  Google Scholar 

  41. Van Nostrand, R.C., Design of experiments using the Taguchi approach: 16 steps to product and process improvement, Technometrics, 2002, vol. 44, p. 289.

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the financial support of the Ministry of Higher Education, Malaysia, through the grant FRGS/1/2019/TK03/UMP/02/25 and also of the Universiti Malaysia Pahang, Malaysia, through grants RDU1901161 and PGRS220365.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Qutaba.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazrin Mokhtar, Qutaba, S., Asmelash, M. et al. Impact of Pressure on Surface Roughness and Kerf Characteristics Using Low Pressure Abrasive Water Jet Cutting. Surf. Engin. Appl.Electrochem. 60, 129–141 (2024). https://doi.org/10.3103/S1068375524010125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375524010125

Keywords:

Navigation